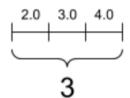


Reminder: Scalars, Vectors, Matrices & Tensors

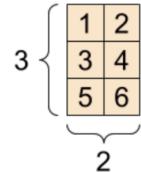
A scalar, shape: []

4

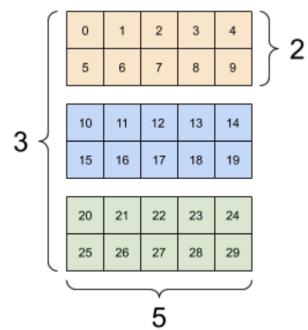
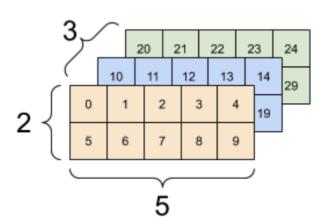
A vector, shape: [3]



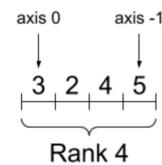
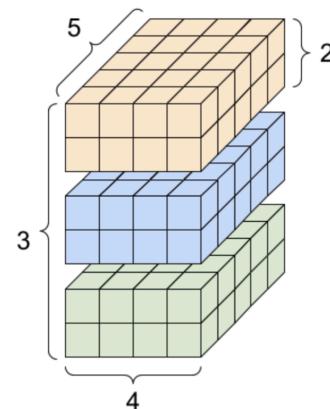
A matrix, shape: [3, 2]



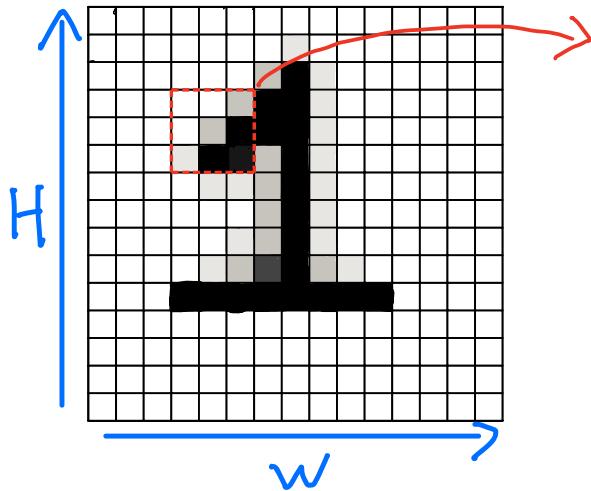
A 3-axis tensor, shape: [3, 2, 5]



A rank-4 tensor, shape: [3, 2, 4, 5]



Representing Images



255	255	127
255	127	0
192	0	62

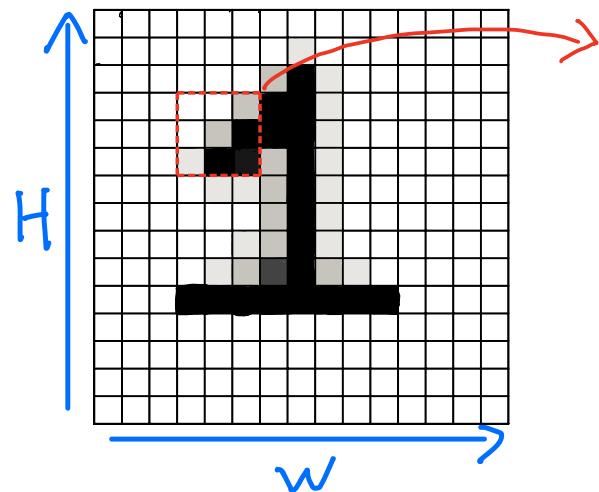
- Images composed of pixel features
- Typically 8-bit values 0 - 255 (int)

$0 \rightarrow \text{Black}$ ≈ 127 $255 \rightarrow \text{White}$

Single obs x is a matrix: $H \times W$

Batch \mathbb{X} is a 3-D Tensor: $N \times H \times W$

Representing Images



255	255	127
255	127	0
192	0	62

1.	1.	0.5
1.	0.5	0.
0.7	0.	0.2

0 to 1

good

1.	1.	0.
1.	0.	-1.
1.2	-1.	-0.5

-1 to 1

better

For Neural Networks Want
to convert to float and rescale

Norm

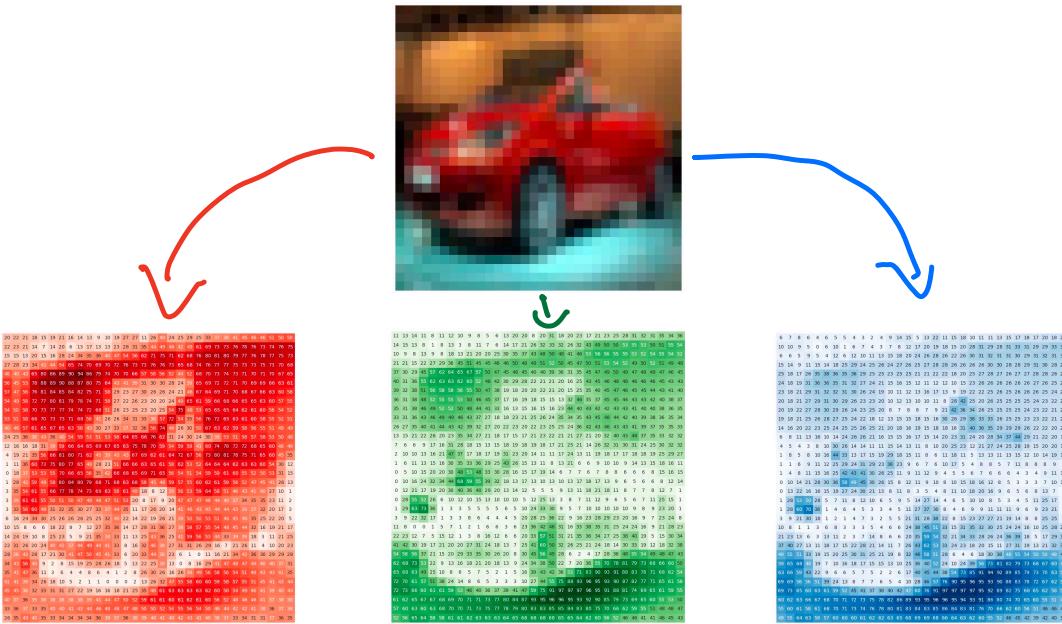
best!

[But dataset
specific ::]

3.1	3.1	0.1
3.1	0.1	-3.
1.4	-3.	-1.1

RGB Images

Represent color pixels w/ 3-Channels
[3-Values per pixel]



Single obs. x is 3-D tensor: $H \times W \times 3$

Batch \mathcal{X} is 4-D tensor: $N \times H \times W \times 3$

Purple → 240 High red

 → 10 Low green

→ 200 High blue

White

Max red

Max green

Max blue

A black square points to three boxes labeled "No red" (red), "No green" (green), and "No blue" (blue).

RGB Images - PyTorch

Normal

Single obs. x is 3-D tensor: $H \times W \times 3$

Batch \mathcal{X} is 4-D tensor: $N \times H \times W \times 3$

PyTorch

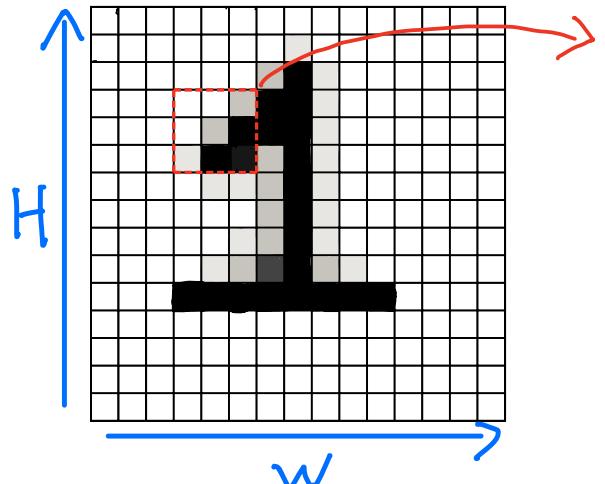
Single obs. x is 3-D tensor: $3 \times H \times W$

Batch \mathcal{X} is 4-D tensor: $N \times 3 \times H \times W$

$x.\text{permute}(0, 3, 1, 2)$

Representing Images (So far)

For standard neural network Reshape into vector



255	255	127
255	127	0
192	0	62

Single Obs. x : $\overset{\text{Pixels}}{\underset{Hw}{\text{---}}}$...

Batch X : $N \times \overset{\text{Pixels}}{\underset{Hw}{\text{---}}}$

Image 1	255	255	127	255	127	0	192	0	64
Image 2	255	255	127	255	127	0	192	0	64
Image 3	255	255	127	255	127	0	192	0	64
:	255	255	127	255	127	0	192	0	64

N

$\overset{\text{Pixels}}{\underset{Hw}{\text{---}}}$

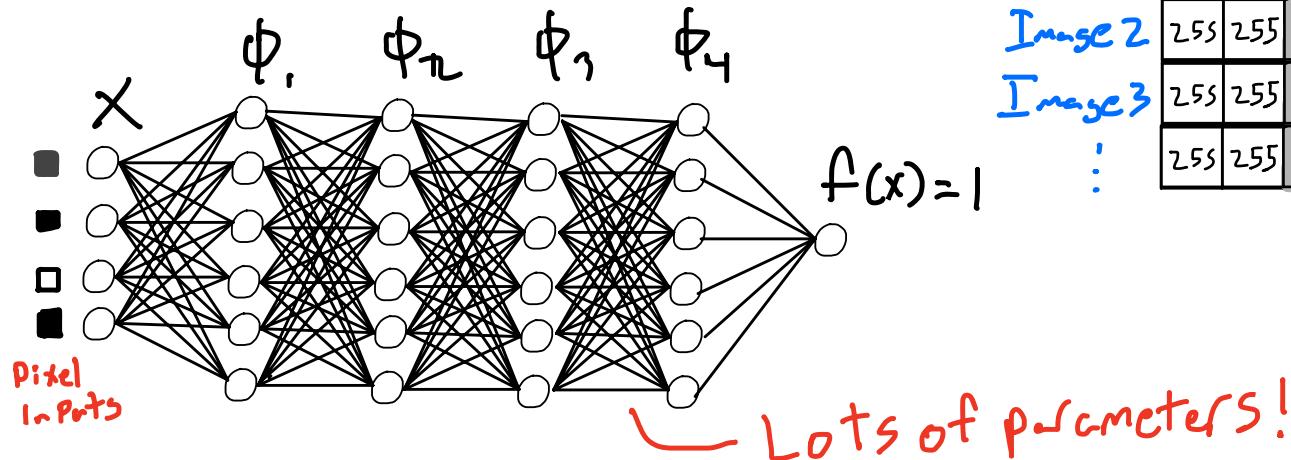
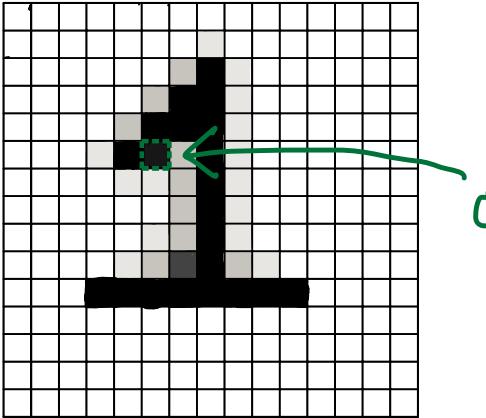


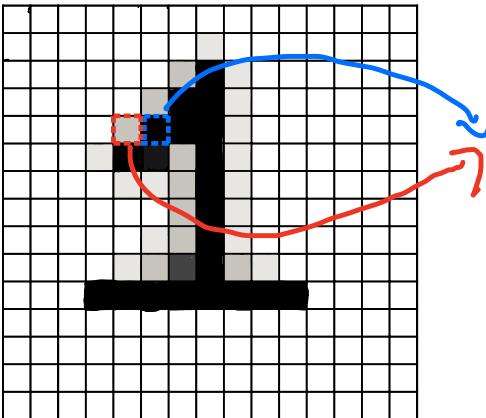
Image Structure

- Class determined by relationships between features

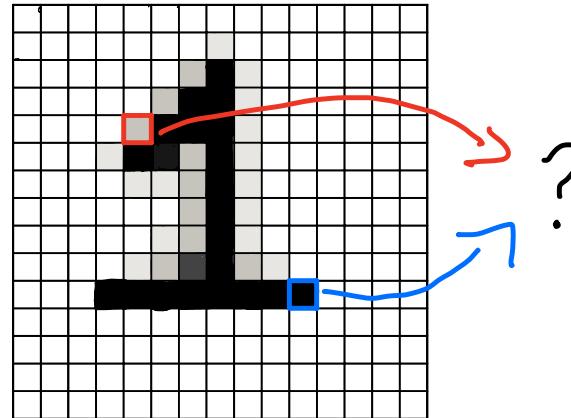


One pixel has little info by itself!

- Relationships between nearby pixels are more important than far pixels



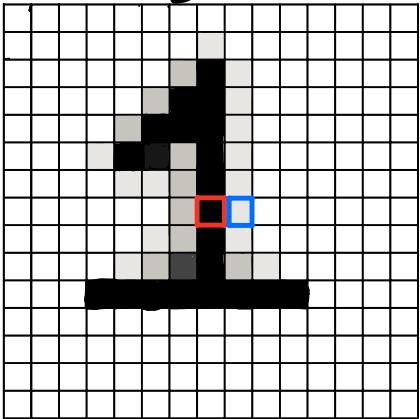
There is an edge here



?

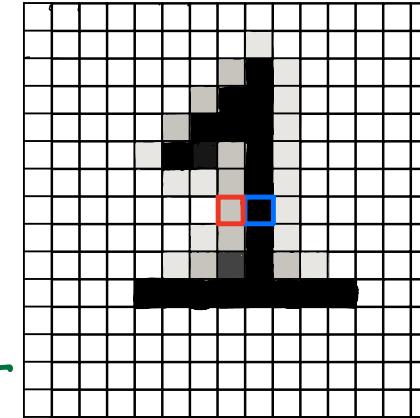
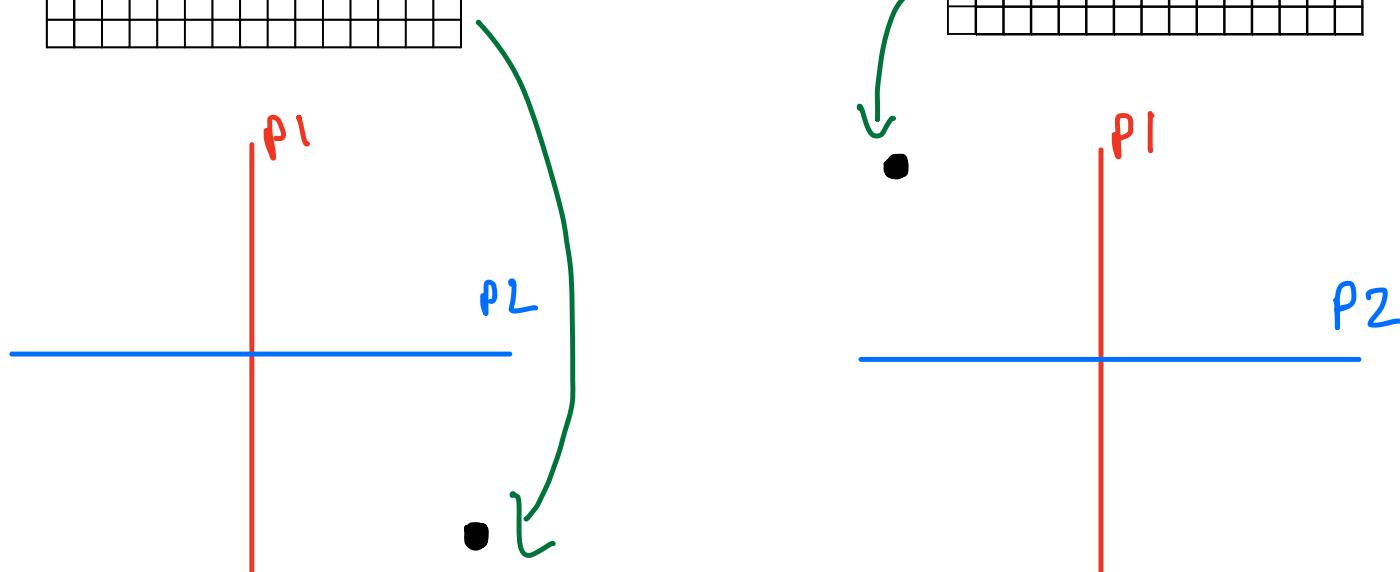
Image Structure

Original



Translation
shouldn't change
prediction

Shifted right



But features can change a lot!

Logistic Regression

Input w_c $x_{0:1}$ Pred $\xrightarrow{\text{Input}} w_c$ $x_{0:1}$ Pred

$$3 \times \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$3 \times \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

- Regression weights
from HW 3

$$3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

- Shifting Image
Changes predicted
class!

$$3 \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$3 \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$3 \begin{bmatrix} 3 \\ 3 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$3 \begin{bmatrix} 3 \\ 3 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

Remember prediction
function for multiclass
Classification

$$3 \begin{bmatrix} 4 \\ 4 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

$$3 \begin{bmatrix} 4 \\ 4 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

→ Class w/ Max output

$$3 \begin{bmatrix} 5 \\ 5 \end{bmatrix} \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$

$$3 \begin{bmatrix} 5 \\ 5 \end{bmatrix} \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$

$\text{Pred. } y = f(x) = \arg \max_w w_c^T x$

$$3 \begin{bmatrix} 6 \\ 6 \end{bmatrix} \begin{bmatrix} 6 \\ 6 \end{bmatrix}$$

$$3 \begin{bmatrix} 6 \\ 6 \end{bmatrix} \begin{bmatrix} 6 \\ 6 \end{bmatrix}$$

—

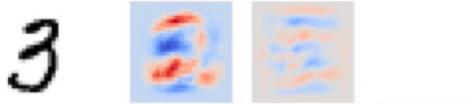
Convolutional Networks (CNNs)

- 1) Maintain Image Structure
(Don't flatten)
- 2) Shift weights to find best alignment
- 3) Make network sparse
(Remove weights)

Shifting Weights

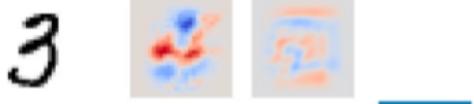
Input (shifted) w \leftarrow $x^T w$ At every location

i.e. $l_{ij} \rightarrow$ Shift w to be

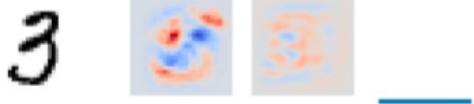


centered at i, j
and compute $x^T w$

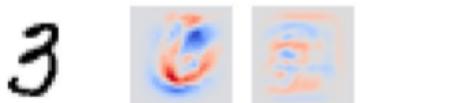
Predict 3 again!



Predict with $\max(l)$

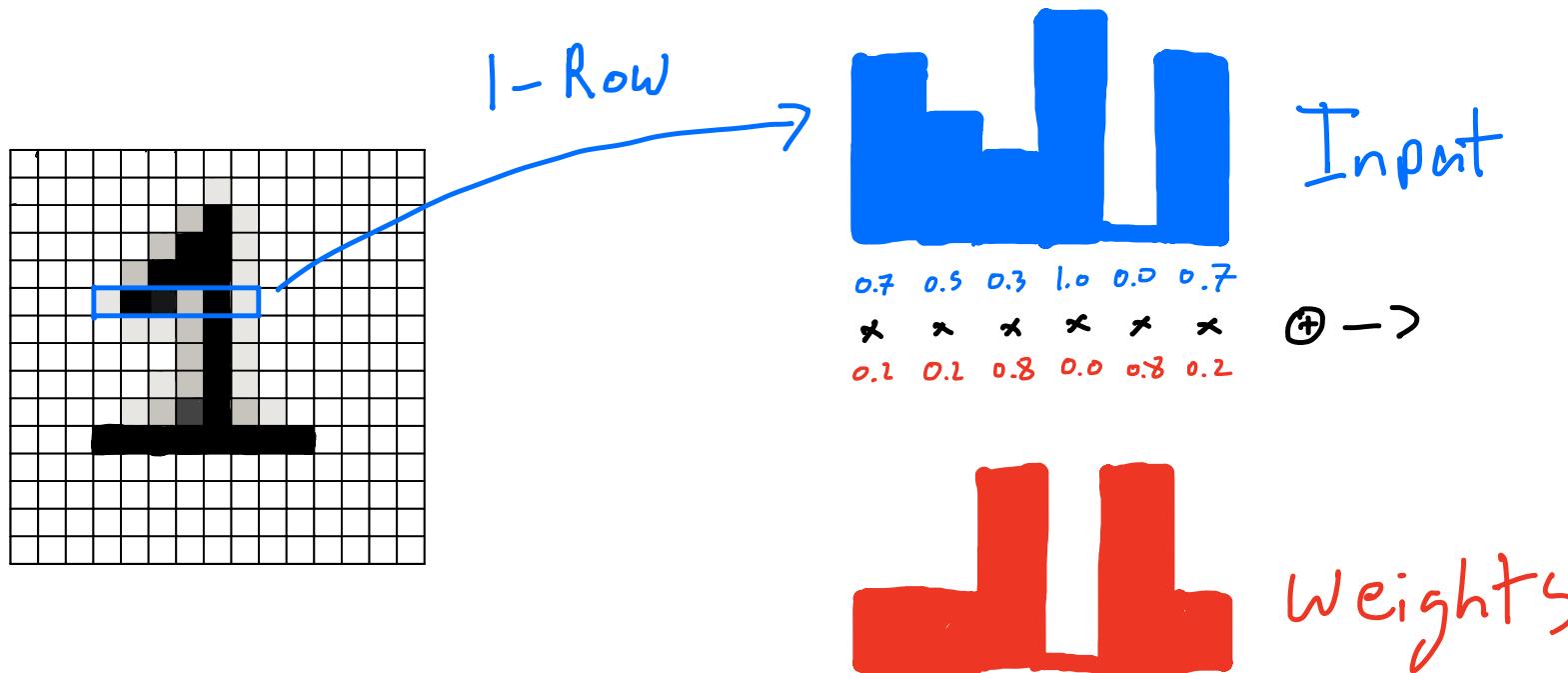


→ Location where x and
 w most closely match



Convolution!

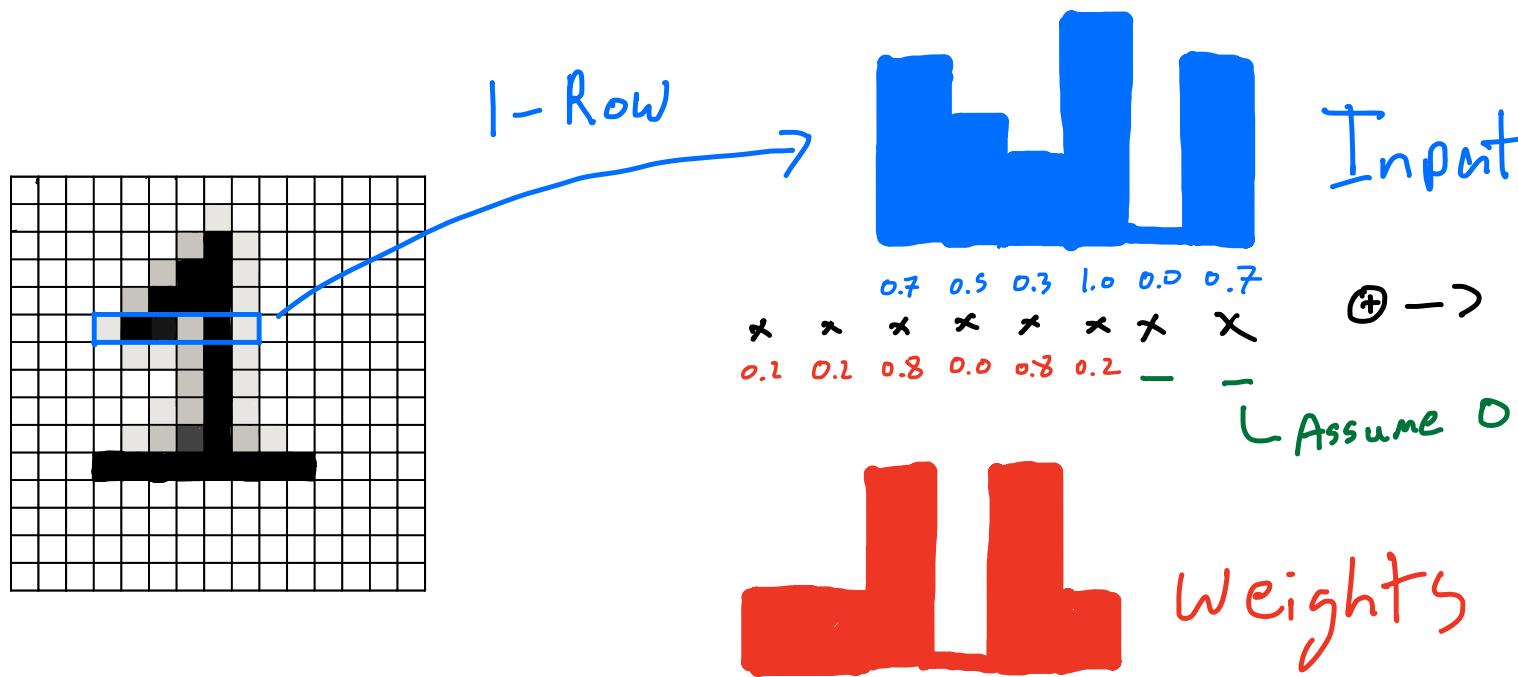
Convolution in 1-dimension



$$(0.7)(0.2) + (0.5)(0.2) + (0.3)(0.8) + (1.0)(0.0) + (0.0)(0.8) + (0.7)(0.2)$$

$$\approx 0.77 \{ \text{purple bar} \}$$

Convolution in 1-dimension

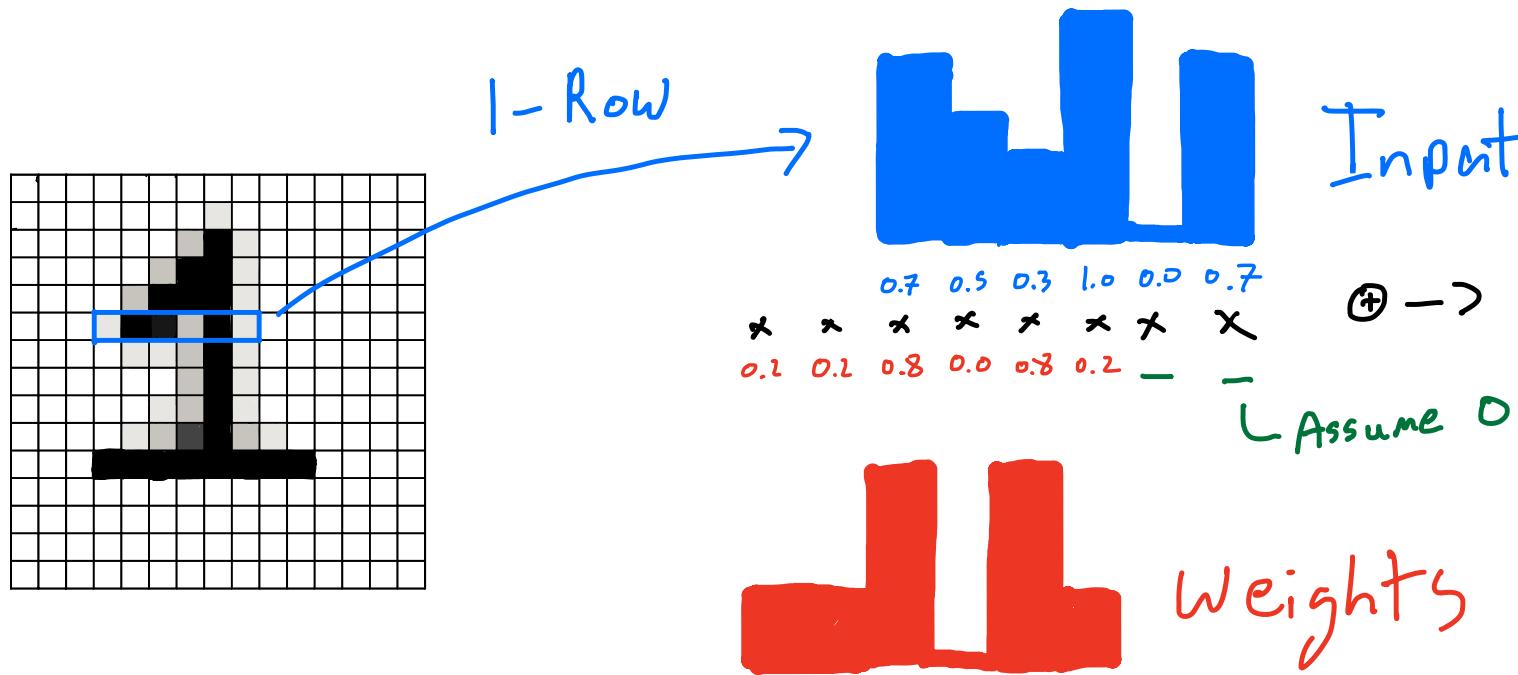


Try different alignment

$$(0.7)(0.8) + (0.5)(0.0) + (0.3)(0.8) + (1.0)(0.2) = 1.0$$

Better than before!

Convolution in 1-dimension



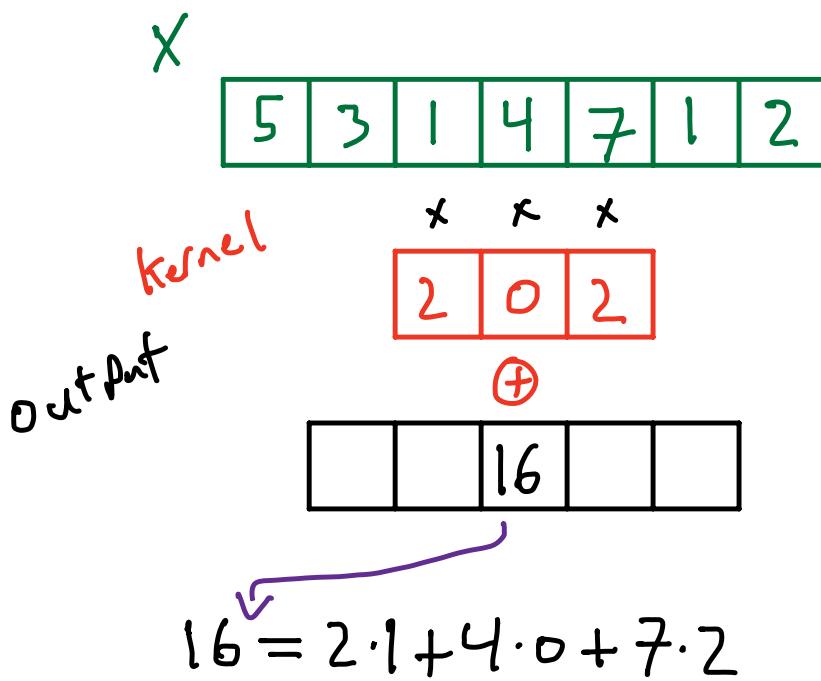
Try different alignment

$$(0.7)(0.8) + (0.5)(0.0) + (0.3)(0.8) + (1.0)(0.2) \\ = 1.0$$

Better than before!

Convolution Operator (1-D)

Inputs: x : Array of length d
Kernel: Array of length s (weights)



Typically: $s \leq d$

Only compute alignments
where kernel fully overlaps x

In torch: Padding = 'Valid'

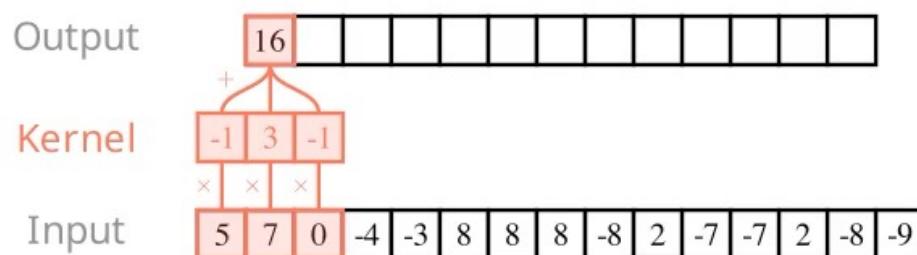
$$\text{Conv}(x, k)_i = \sum_{j=1}^s x_{i+j} k_j$$

$$\text{Output length} = d - (s - 1)$$

Convolution Animated!

Convolution (kernel size: 3)

Output[0]=(-5)(-1)+(-7)(-3)+(0)(-1)= 16



Convolution (kernel size: 3)

Output

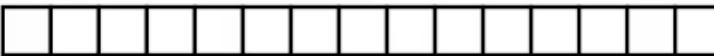
Padding

- If we want to try every possible alignment we need to pad the input w/ 0s
- In torch: padding='full'

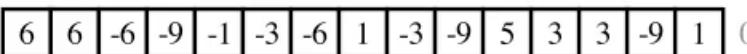
$$\text{Output length} = d + 2(s-1)$$

Padding

Convolution (size: 3, padding: 1)

Output 

Kernel

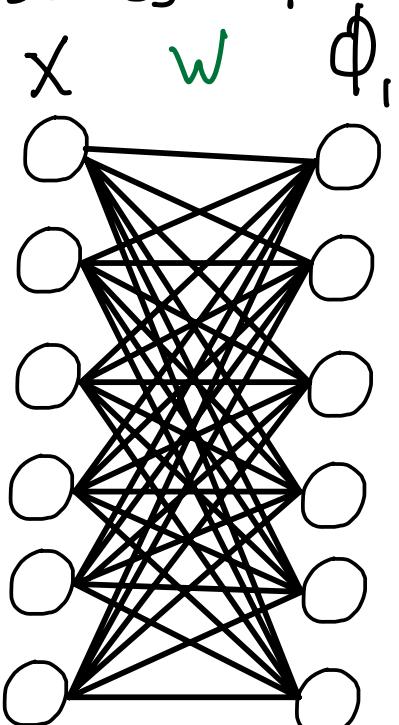
Input 0  1

- Often want Padding in-between
- e.g. If we want an output size of d
- In `torch`: `padding='Same'`

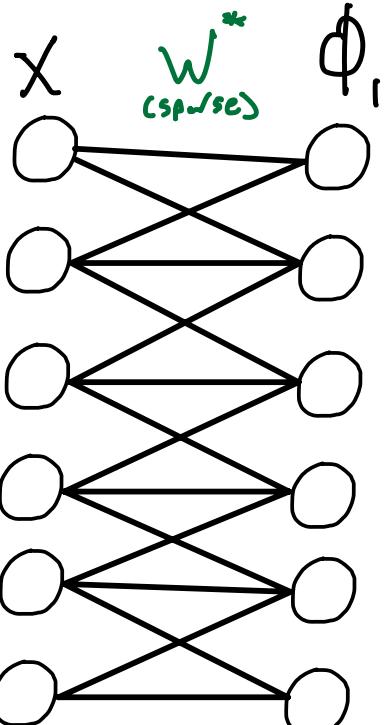
Output length = d

Convolution as a Layer

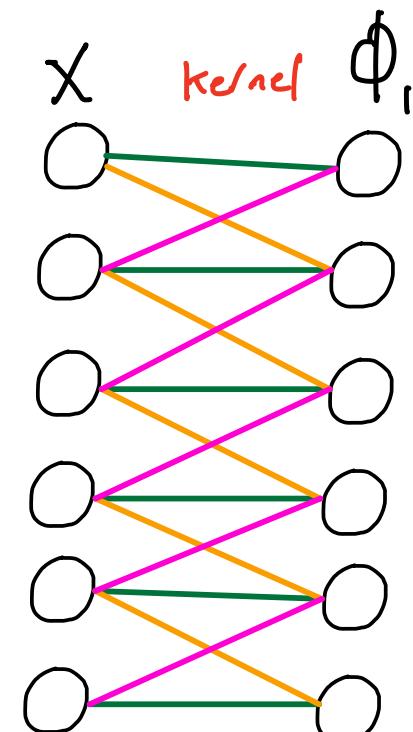
Standard
(Dense) Layer/



Locally-Connected
Layer/



Convolutional
Layer



$$\phi_1 = \sigma(X^T W + b)$$

Every output depends
on every input

$$\phi_1 = \sigma(X^T W^* + b)$$

Every output depends
only on Local inputs

$$\phi_1 = \sigma(\text{Conv}(X, k) + b)$$

And weights are
Shared for each output!

Derivatives of convolutions

In general:

$$\frac{dL}{dx_i} = \sum_{j=1}^d \frac{dL}{d\phi_j} \cdot \frac{d\phi_j}{dx_i}$$

but only $\phi_{i-1}, \phi_i, \phi_{i+1}$ depend on x_i so:

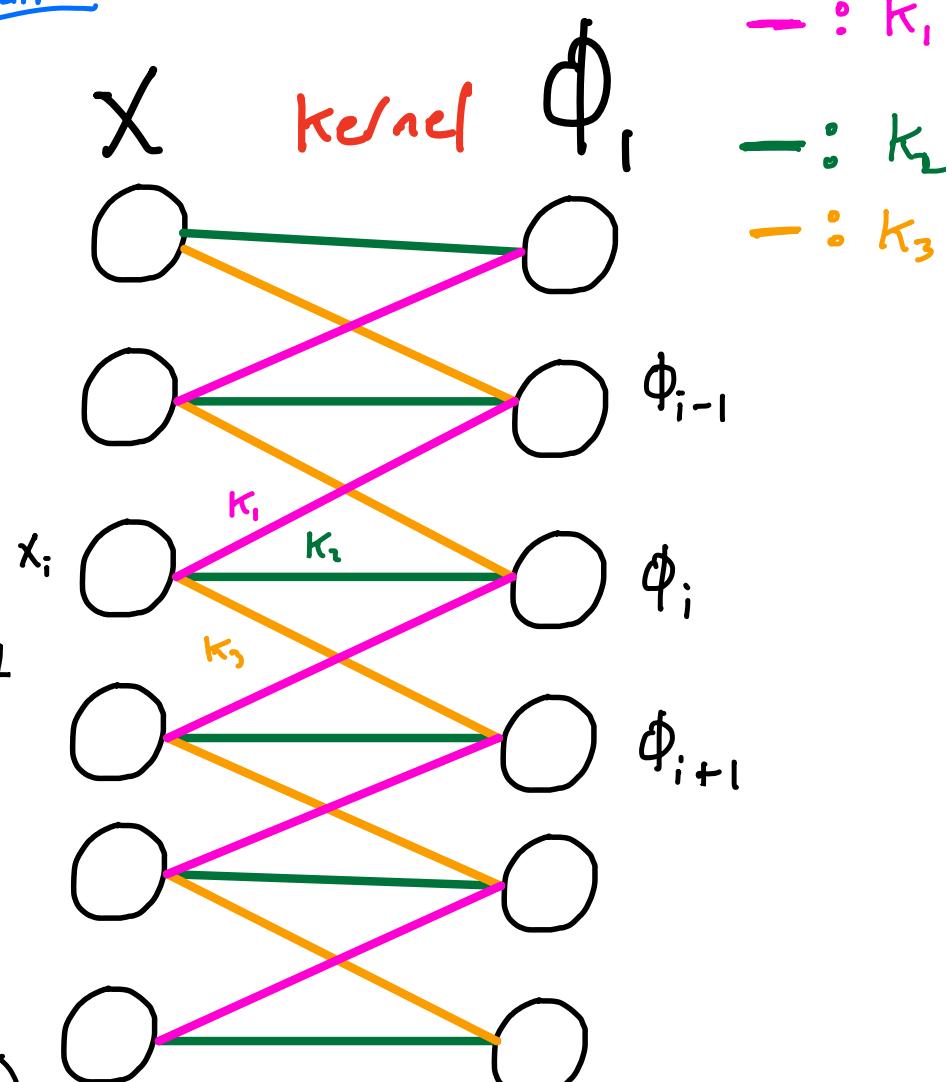
$$\frac{dL}{dx_i} = \frac{dL}{d\phi_{i-1}} \frac{d\phi_{i-1}}{dx_i} + \frac{dL}{d\phi_i} \frac{d\phi_i}{dx_i} + \frac{dL}{d\phi_{i+1}} \frac{d\phi_{i+1}}{dx_i}$$

|| || ||
 K_1 K_2 K_3

$$\phi = \text{Conv}(x, [K_1, K_2, K_3])$$

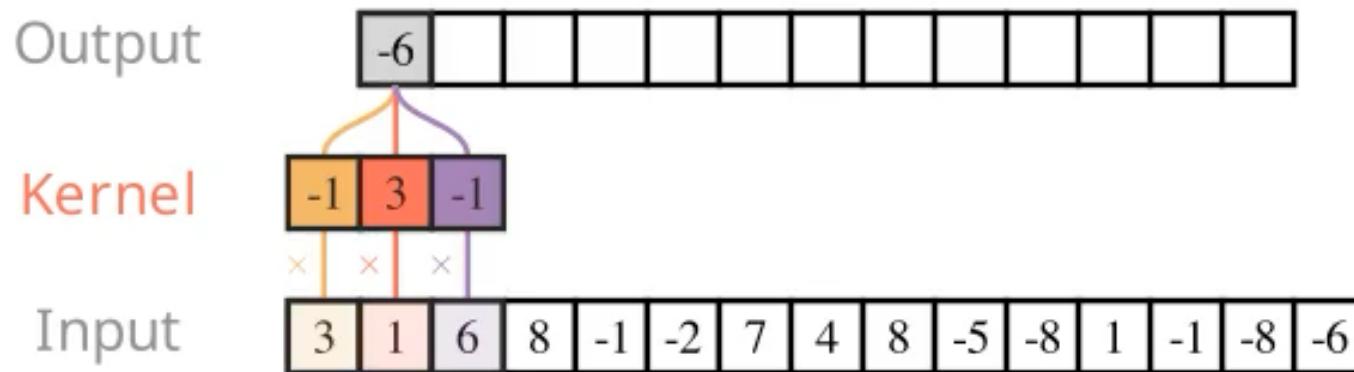
$$\frac{dL}{dx} = \text{Conv}\left(\frac{dL}{d\phi}, [K_3, K_2, K_1]\right)$$

Ignoring activations!

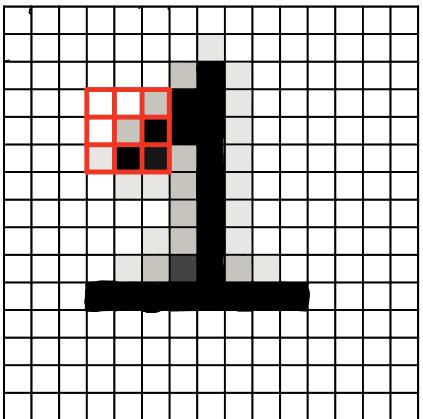


Derivatives Animated!

Convolution (kernel size: 3)



Convolutions in 2-D



Align kernel in every 2-d location

$$\text{CONV2d}(x, k)_{ij} = \sum_{a=1}^s \sum_{b=1}^s x_{i+a, j+b} \cdot k_{ab}$$

[For padding = 'Valid']

5	-1	3	8	4	6	-2
-3	4	9	1	1	7	-4
5	-6	3	2	1	-2	0
0	-8	5	5	4	-2	3
4	7	2	-7	3	1	4
4	-3	1	2	6	1	-1
0	0	3	-2	3	-1	0

-1	-2	-1
0	0	0
1	2	1

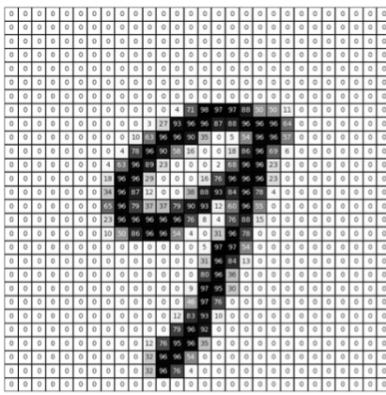
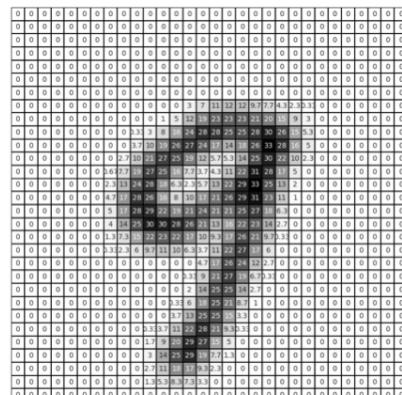
			1

$$\begin{aligned} I = & 1 \cdot (-1) + 1 \cdot (-2) + 7 \cdot (-1) + 2 \cdot 0 + 1 \cdot 0 + \\ & (-2) \cdot 0 + 5 \cdot 1 + 4 \cdot 2 + (-2) \cdot 1 \end{aligned}$$

Convolutions in 2-D (Blur)

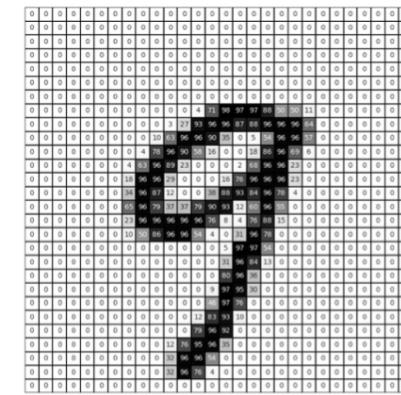
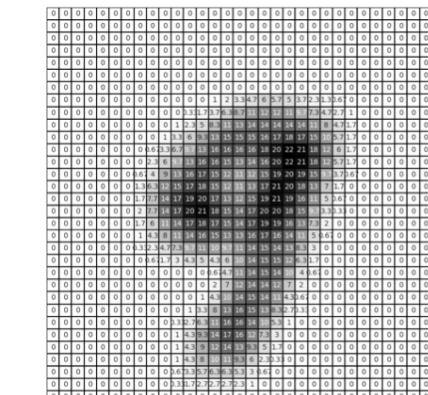
Small Blur

0.12	0.12	0.12
0.12	0.12	0.12
0.12	0.12	0.12



Large Blur

0.04	0.04	0.04	0.04	0.04
0.04	0.04	0.04	0.04	0.04
0.04	0.04	0.04	0.04	0.04
0.04	0.04	0.04	0.04	0.04
0.04	0.04	0.04	0.04	0.04



Convolutions in 2-D (Edge detect)

Vertical edges

Horizontal edges

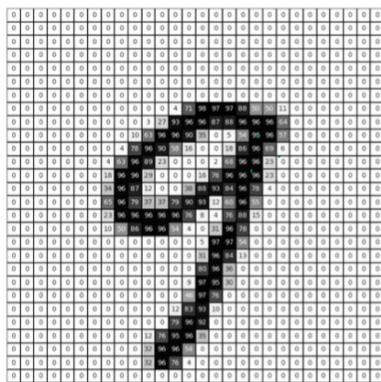
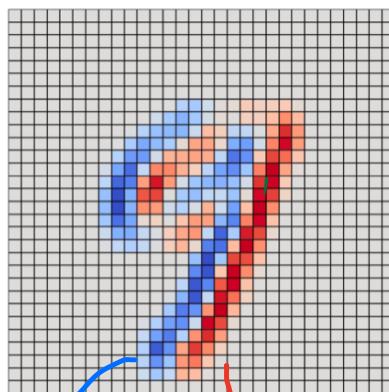
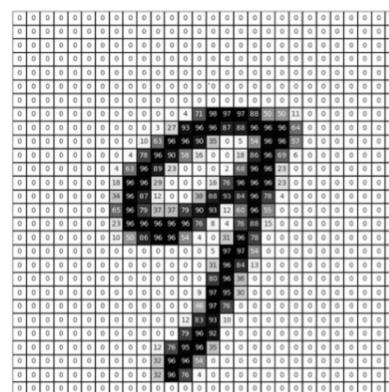
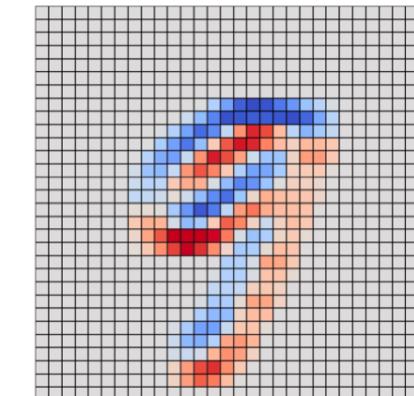
Pos.

1	0	-1
1	0	-1
1	0	-1

- neg.

→ most outputs
→ near 0

1	1	1
0	0	0
-1	-1	-1

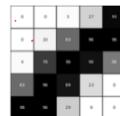
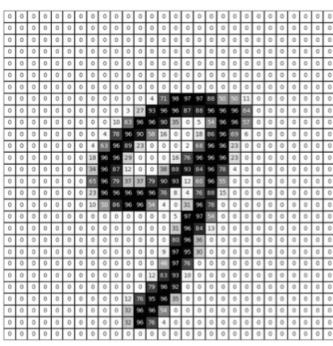
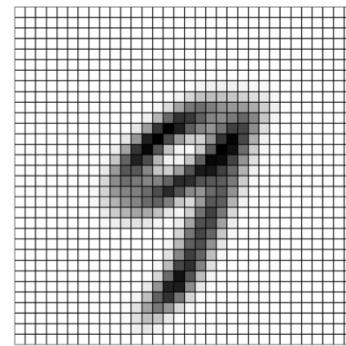
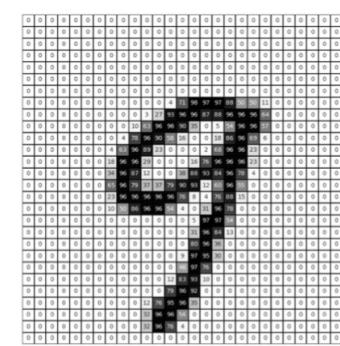
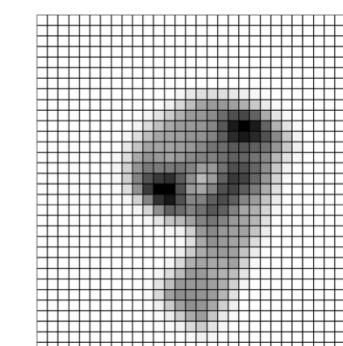


Low Values at neg.
of kernel

High Values Where pattern matches kernel

Convolutions in 2-D (Edge detect)

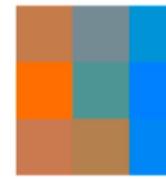
Diagonal edges



CONVolutions for Color images

Image(\mathbf{x})

Kernel (\mathbf{k})



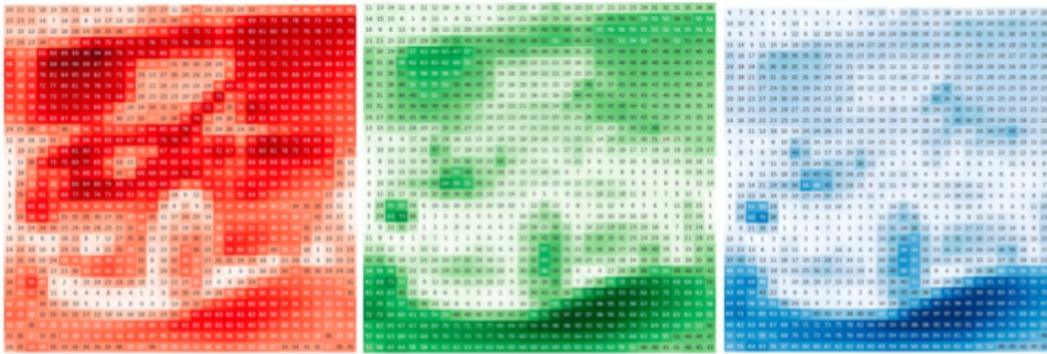
Kernel has 3
Channels like Image!

$$\text{Conv}(\mathbf{x}, \mathbf{k}) = \sum_{i=1}^3 \text{Conv}(\mathbf{x}_i, \mathbf{k}_i)$$

$$\text{Conv}(\mathbf{x}_r, \mathbf{k}_r) +$$

$$\text{Conv}(\mathbf{x}_g, \mathbf{k}_g) +$$

$$\text{Conv}(\mathbf{x}_b, \mathbf{k}_b)$$



Red

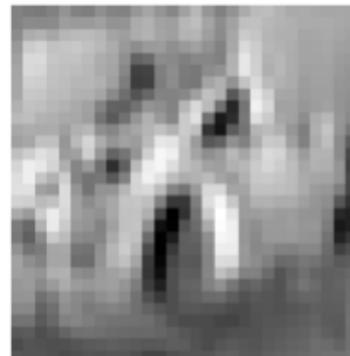
73	47	17
96	37	0
75	66	9

49	53	57
46	57	49
49	51	52

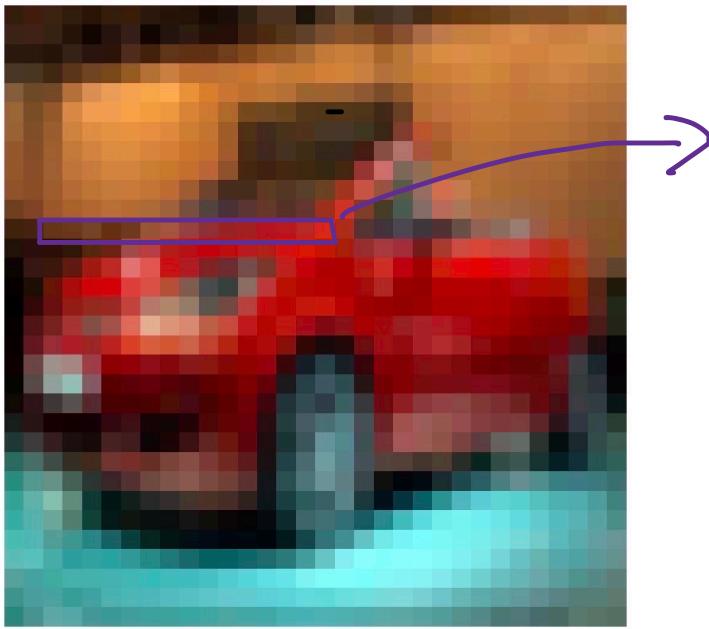
Blue

32	56	80
10	57	99
33	34	92

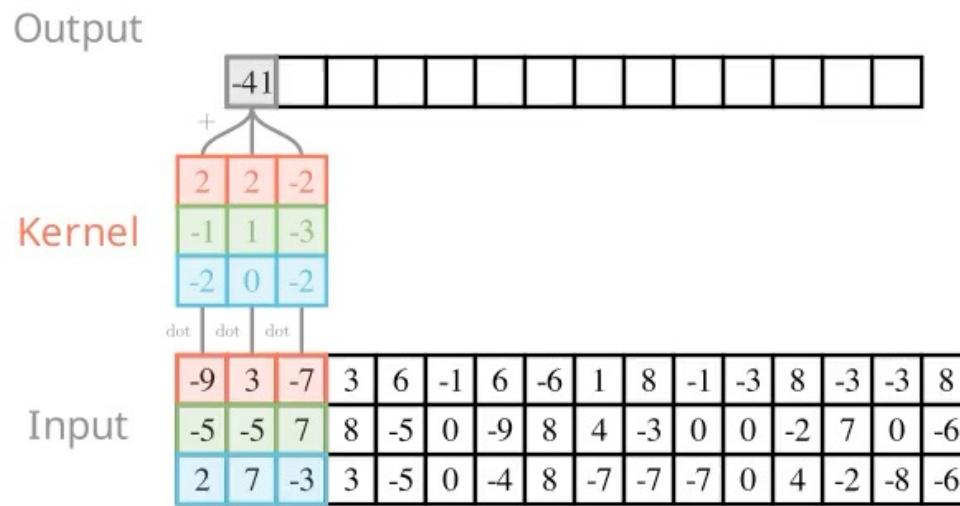
Result



Multi-Channel Convolution (1-D)



Convolution (size: 3, channels: 3, output channels: 1)



Not limited to
3-channels!

$$\text{Conv}(X, k) = \sum_{c=1}^C \text{Conv}(x_c, k_c)$$

↗ Sum over
 channels!

↗ H x W x C ↗ S x S x C

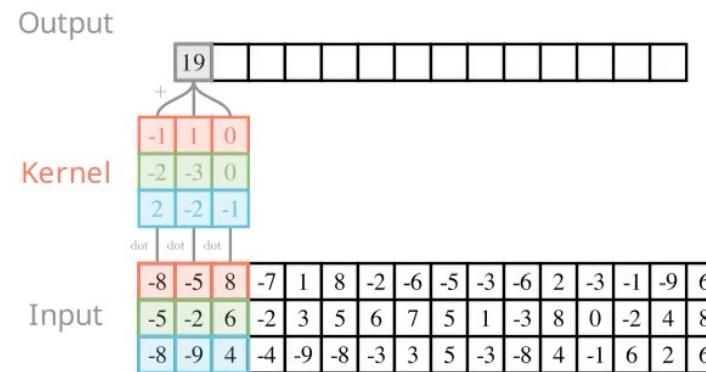
↗ H x W ↗ S x S

Multiple Output channels

Kernel can also produce multiple channels (71 value at each location)

1-D

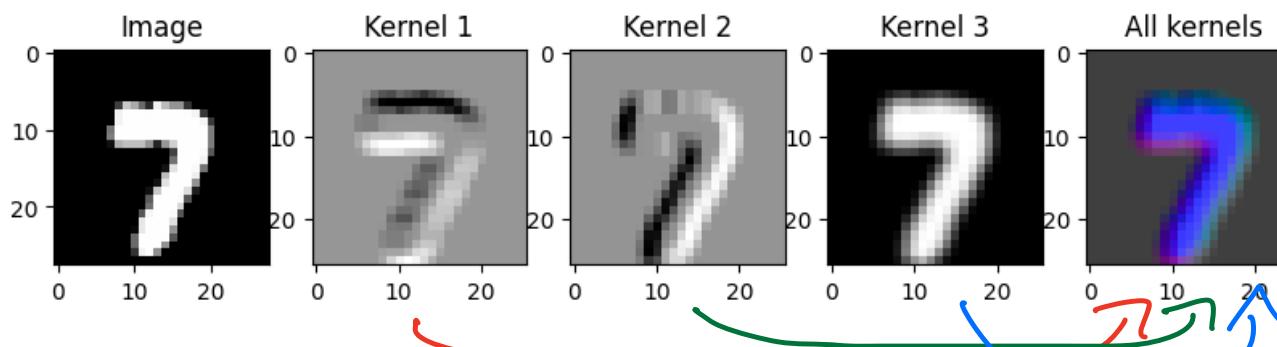
Convolution (size: 3, channels: 3, output channels: 3)



In 2-D

Combine 3 filters into a multi-channel

Image



General 2-D Convolutional Layer

Input (X): $N \times H \times W \times C$

Images (Batch) Height Width # Channels

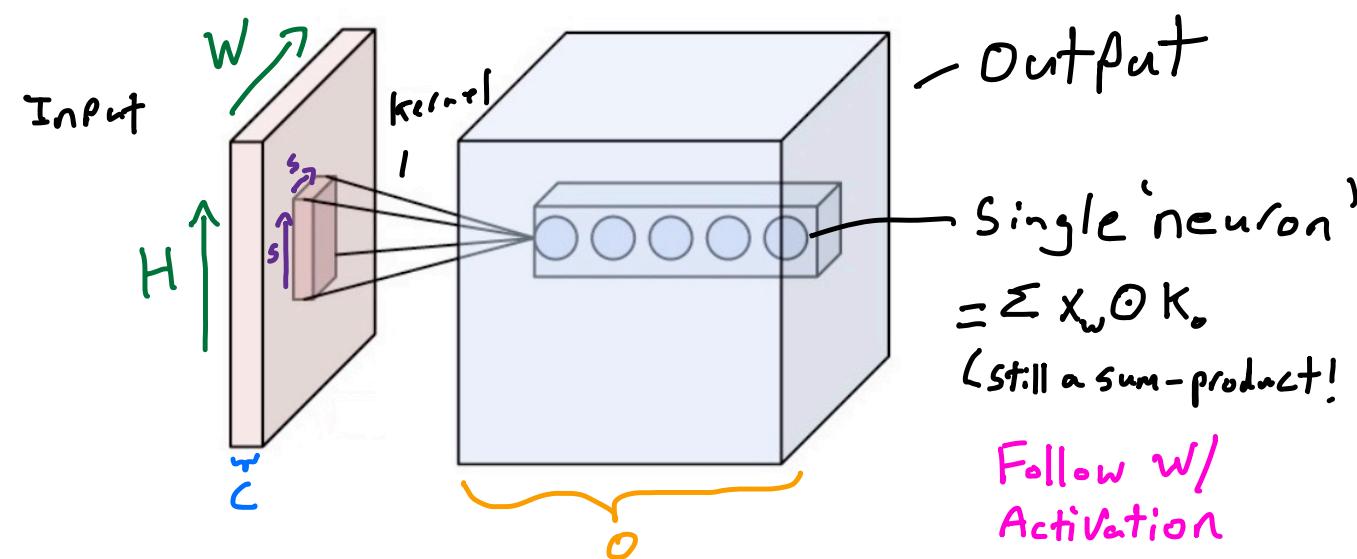
Kernel (K): $S \times S \times C \times O$

Kernel size # channels # output channels

Output (ϕ): $N \times H \times W \times O$

May change for padding \neq 'same'

Diagram:



PyTorch 2-D Convolutional Layer

Input (X): $N \times C \times H \times W$
Channels
before \rightarrow Kernel (K): $C \times O \times S \times S$
Image size
CONV2D \rightarrow Output (ϕ): $N \times O \times H \times S$

```
CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0,  
dilation=1, groups=1, bias=True, padding_mode='zeros', device=None,  
dtype=None) [SOURCE]
```

Applies a 2D convolution over an input signal composed of several input planes.

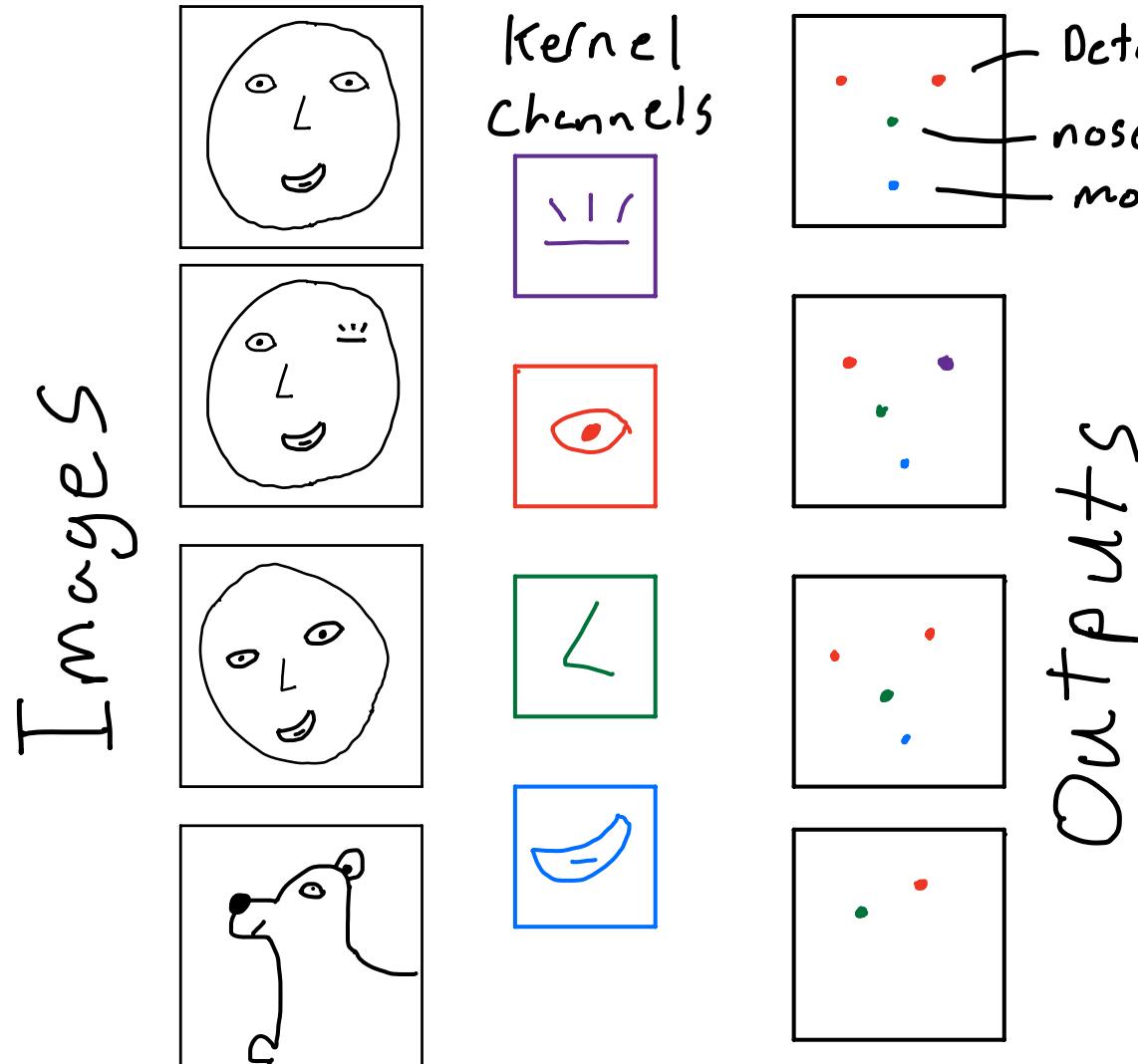
In the simplest case, the output value of the layer with input size (N, C_{in}, H, W) and output $(N, C_{\text{out}}, H_{\text{out}}, W_{\text{out}})$ can be precisely described as:

$$\text{out}(N_i, C_{\text{out}_j}) = \text{bias}(C_{\text{out}_j}) + \sum_{k=0}^{C_{\text{in}}-1} \text{weight}(C_{\text{out}_j}, k) \star \text{input}(N_i, k)$$

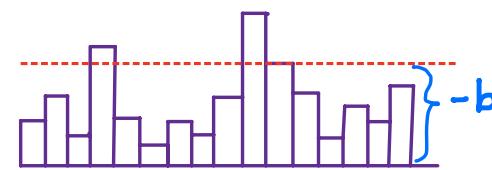
where \star is the valid 2D cross-correlation operator, N is a batch size, C denotes a number of channels, H is a height of input planes in pixels and W is width in pixels.

Technically what we call Convolution is cross correlation

Convolutions as feature detectors

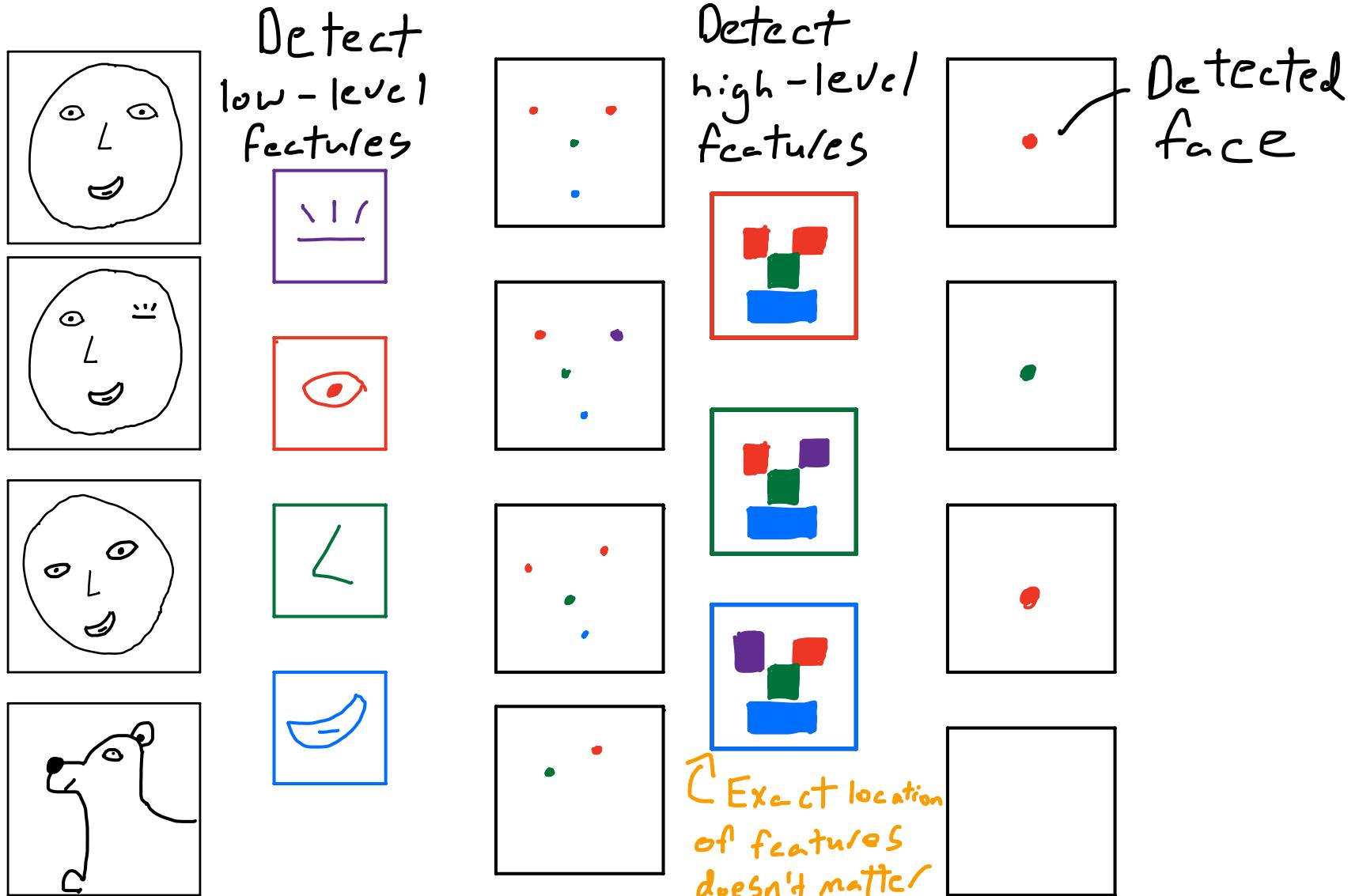


ReLU as threshold



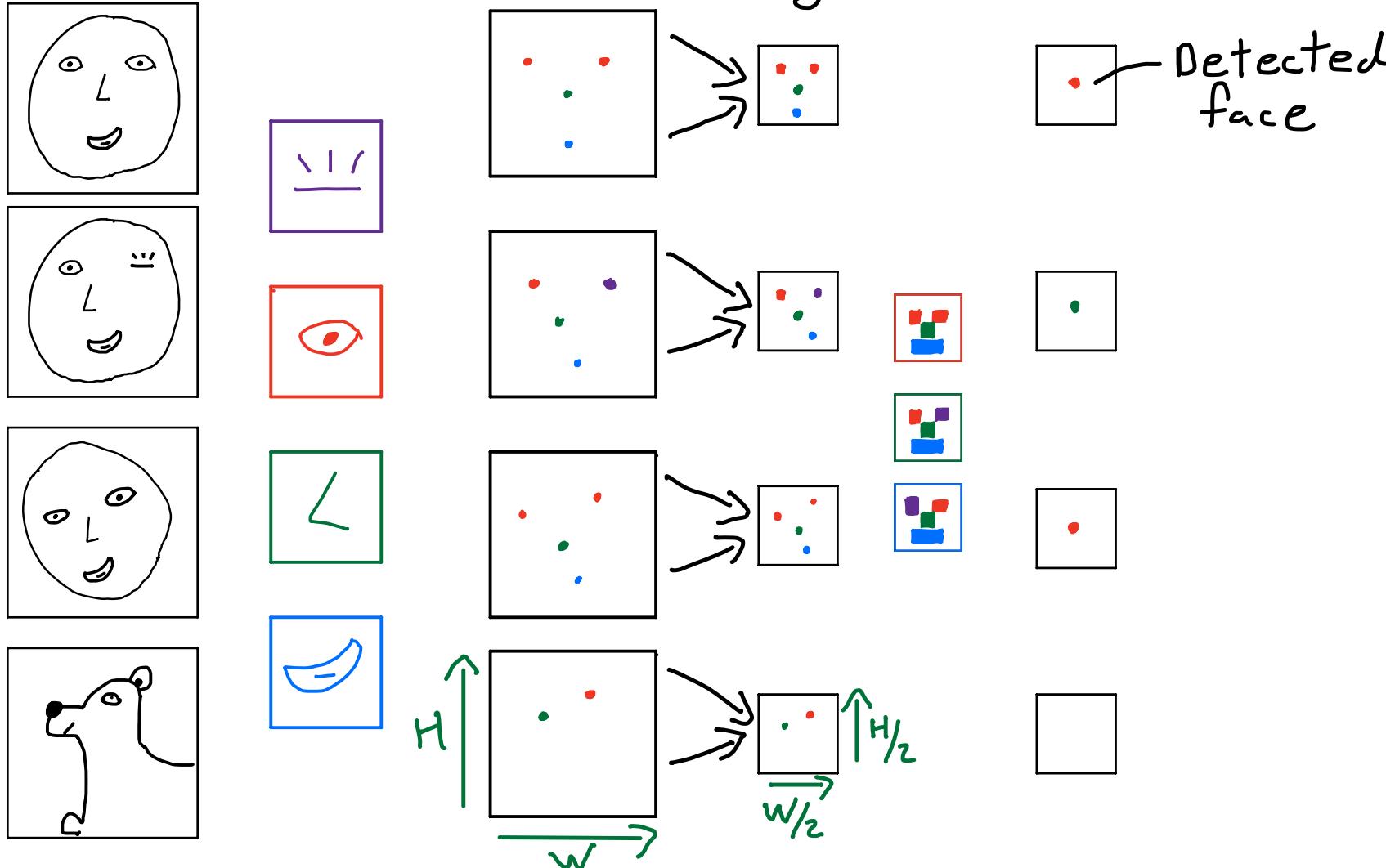
$$\text{Max}(\text{conv}(x, k) + b, 0)$$

Multi-Layer CNNs



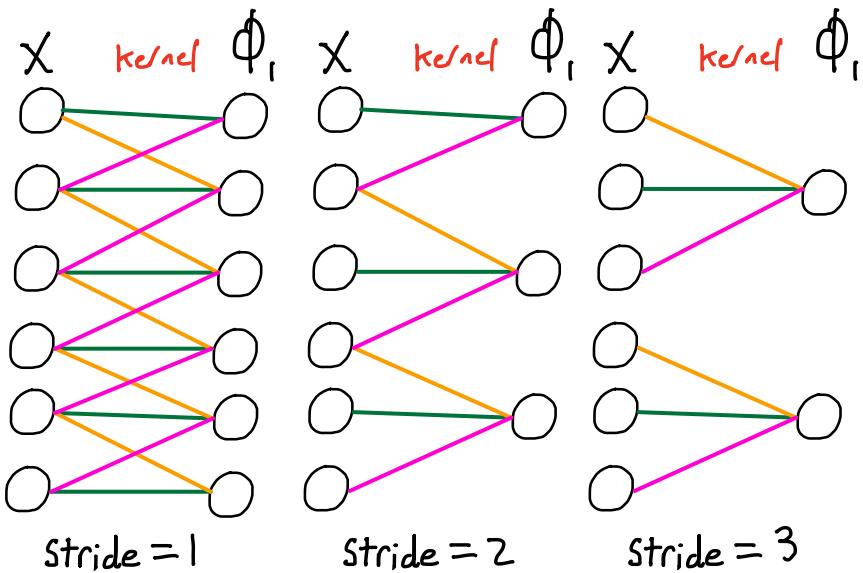
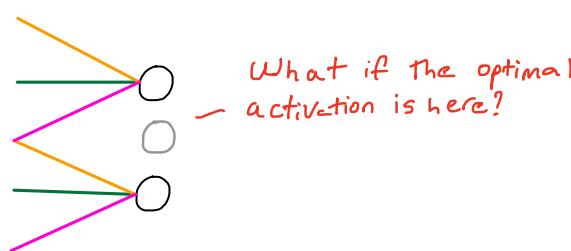
Down Sampling

Reduce resolution \rightarrow Easier and less expensive
to find high-level features

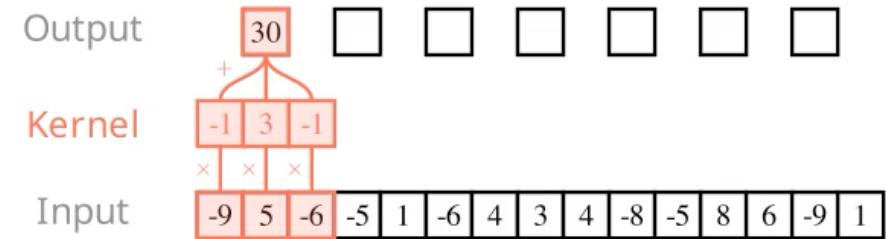


Strided Convolution (1-D)

- Take only $\frac{1}{\text{stride}} \times \text{Outputs}$



Convolution (size: 3, stride: 2)



Strided Convolutions (2-D)

- Apply stride in each dimension

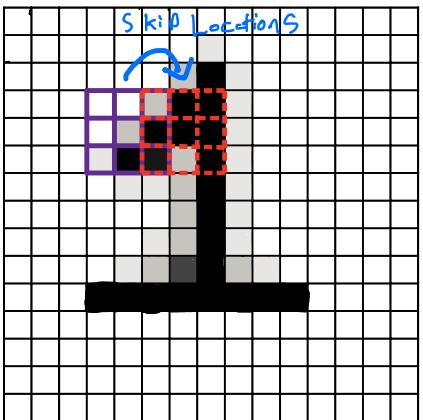
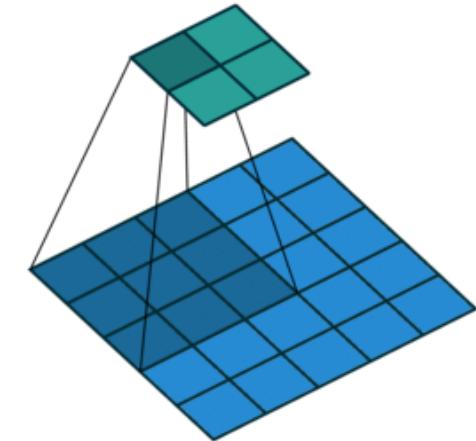


Diagram illustrating the receptive field of a central output unit in a 2D input grid. A purple dashed box shows the receptive field of the central unit, which covers a 3x3 area. A red dashed box shows the stride of 2, which covers a 6x6 area. A blue dashed box shows the stride of 2 again, which covers a 12x12 area.

5	-1	3	8	4	6	-2
-3	4	9	1	1	7	-4
5	-6	3	2	1	-2	0
0	-8	5	5	4	-2	3
4	7	2	-7	3	1	4
4	-3	1	2	6	1	-1
0	0	3	-2	3	-1	0

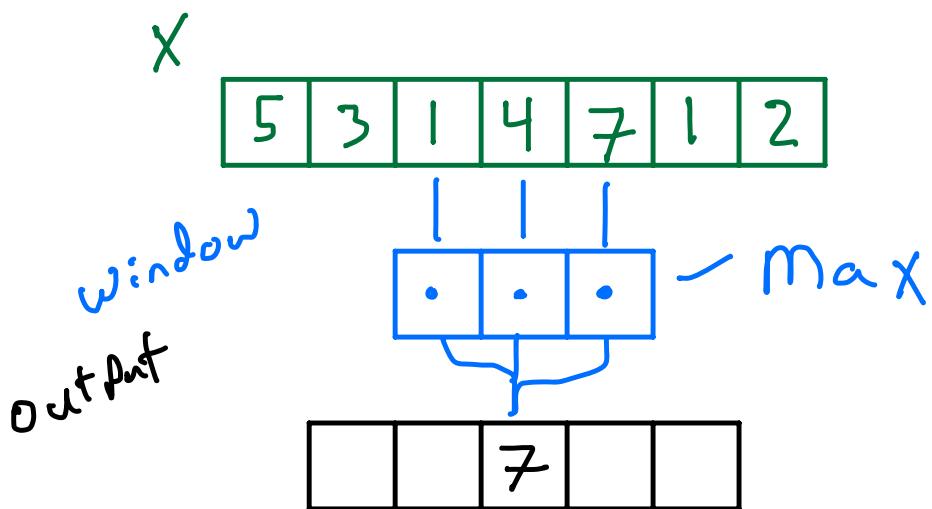
Diagram illustrating a 3x3 kernel with weights: -1, -2, -1; 0, 0, 0; 1, 2, 1. A purple box highlights the central unit, and a red box highlights the unit at (2,2). A blue box highlights the unit at (1,1).

-1	-2	-1
0	0	0
1	2	1

Stride = 2

Pooling Operator (1-D)

Inputs: x : Array of length d
window size s



$$\cdot 7 = \text{Max}(1, 4, 7)$$

- Take max output around each location before downsampling
- Make sure we don't miss any high activations
- Can also take Avg. (Average Pooling)

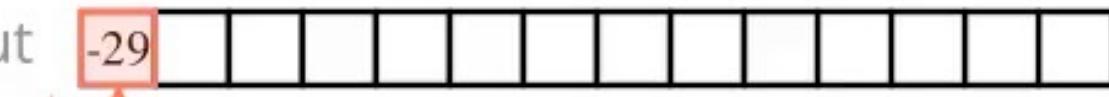
Convolution + Max Pooling Animated!

Convolution (size: 3) + Max Pooling (size: 3, stride: 2)

Output

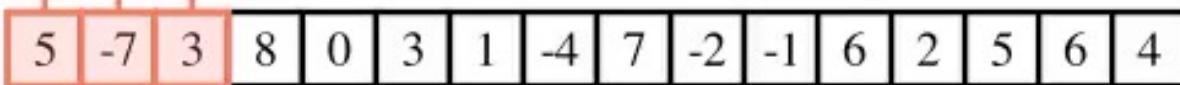
Pooling

Conv. output

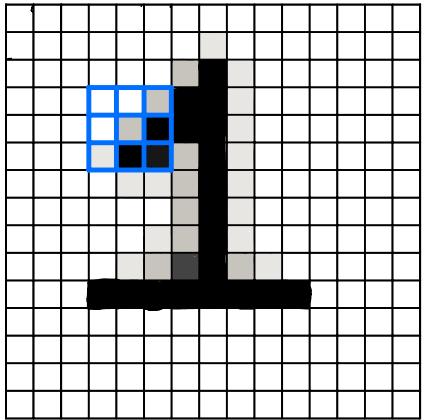


Kernel

Input



Pooling in 2-D



Align window in every 2-d location

$$\text{Max-Pool}(x)_{ij} = \max_{a=1}^s \max_{b=1}^s (x_{i+a, j+b})$$

$$\text{Avg.-Pool}(x)_{ij} = \frac{1}{s^2} \sum_{a=1}^s \sum_{b=1}^s x_{i+a, j+b}$$

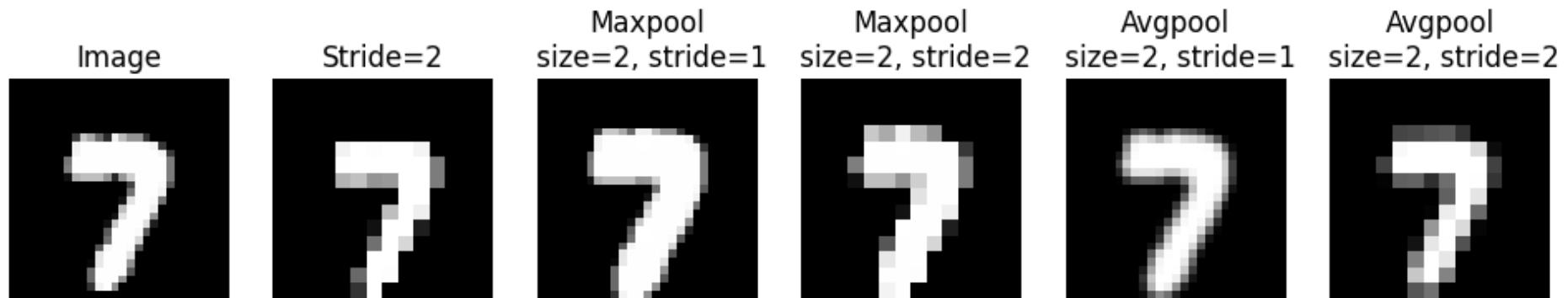
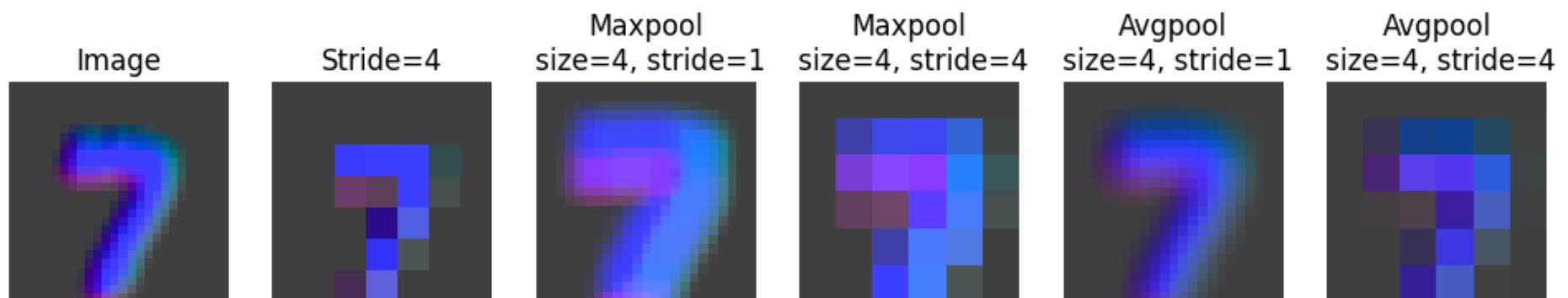
5	-1	3	8	4	6	-2
-3	4	9	1	1	7	-4
5	-6	3	2	1	-2	0
0	-8	5	5	4	-2	3
4	7	2	-7	3	1	4
4	-3	1	2	6	1	-1
0	0	3	-2	3	-1	0

max

			7

$$7 = \max(1, 1, \underline{7}, 2, 1, -2, 5, 4, -2)$$

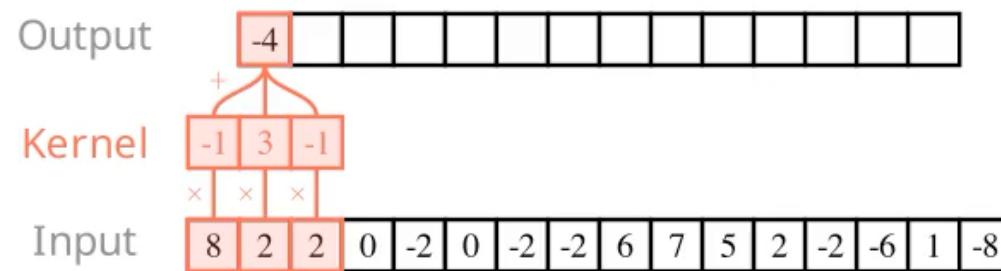
DownSampling Comparison



Pixel Shuffle

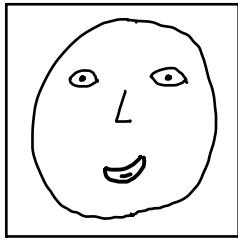
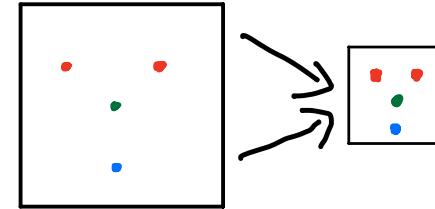
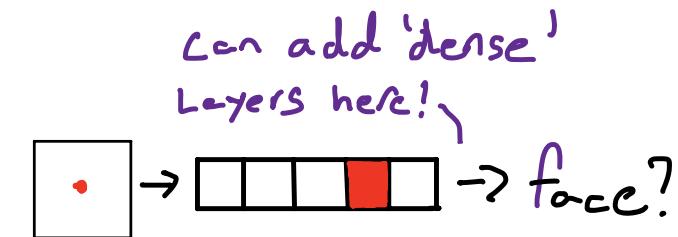
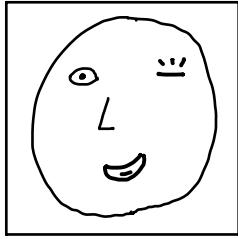
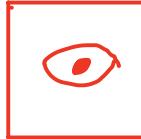
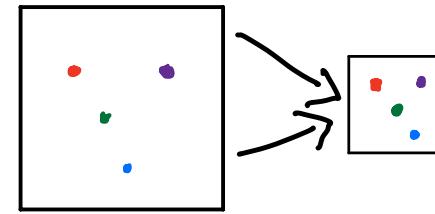
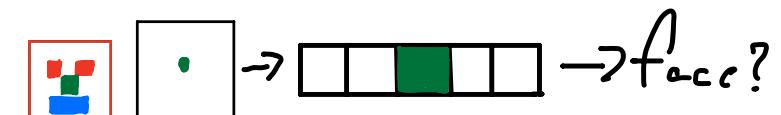
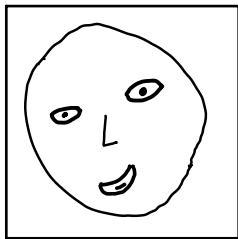
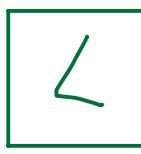
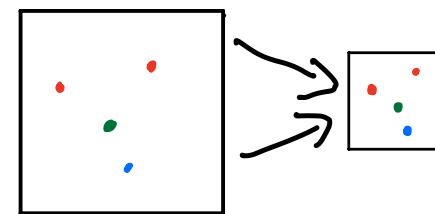
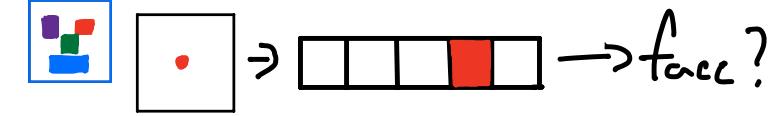
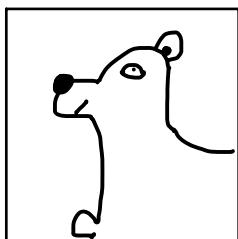
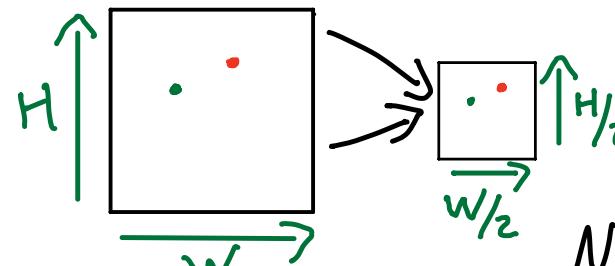
- Rearrange adjacent results into more channels – **Expensive!**

Convolution (size: 3) + Shuffle



Flattening

- After convolutions, flatten as before



$$N \times H \times W \times C \xrightarrow{\text{flatten}} N \times (H \cdot W \cdot C)$$

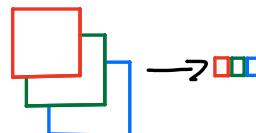
Global Avg. Pooling

- Alt. to flattening, just Avg. over remaining Image

$$\text{Global Avg.-Pool}(x) = \frac{1}{w \cdot h} \sum_{a=1}^w \sum_{b=1}^h x_{a,b}$$

5	-1	3	8	4	6	-2
-3	4	9	1	1	7	-4
5	-6	3	2	1	-2	0
0	-8	5	5	4	-2	3
4	7	2	-7	3	1	4
4	-3	1	2	6	1	-1
0	0	3	-2	3	-1	0

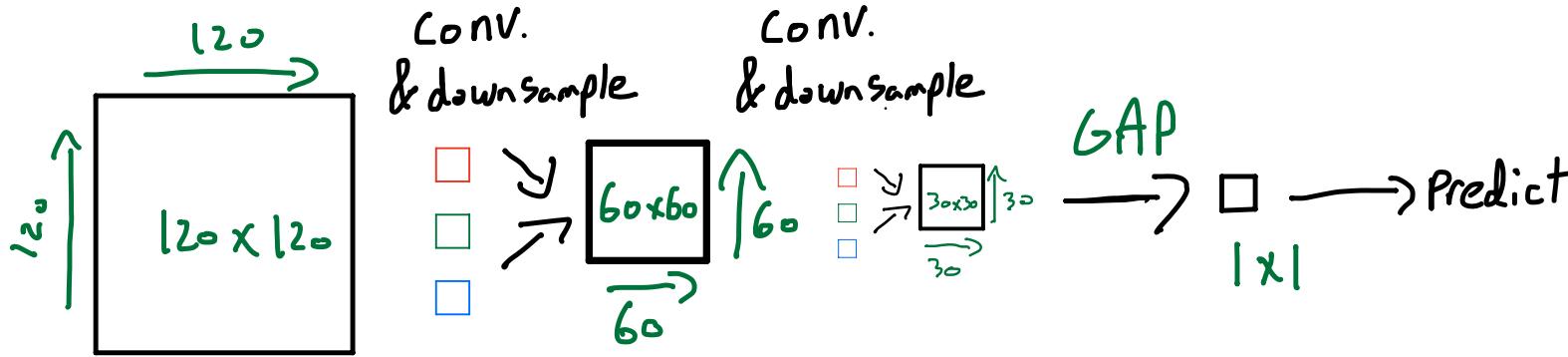
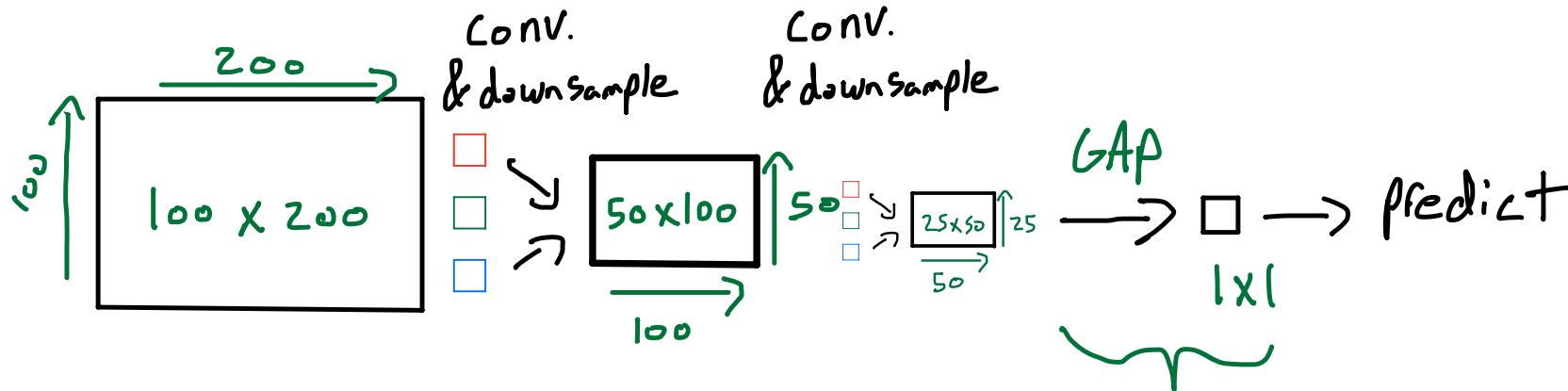
Remember: Still multiple channels!



$$N \times H \times W \times C \xrightarrow{\text{GAP}} N \times C$$

Global Avg. Pooling

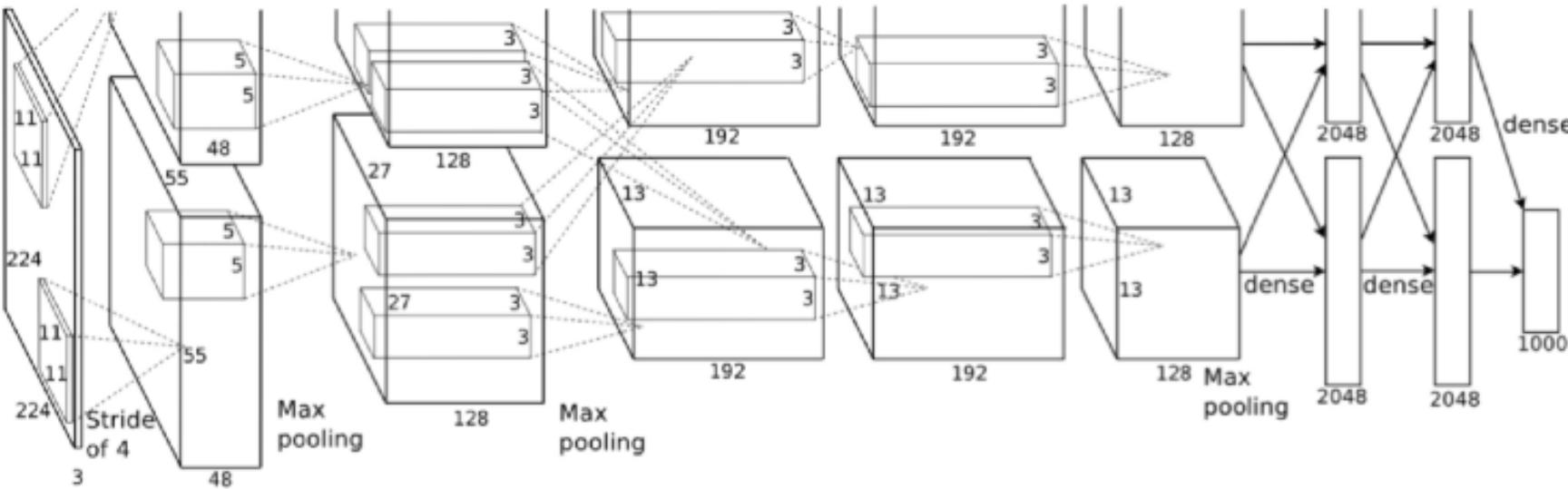
- Allows for inputs of different sizes!



Removes Handw!

AlexNet (2012)

Architecture:

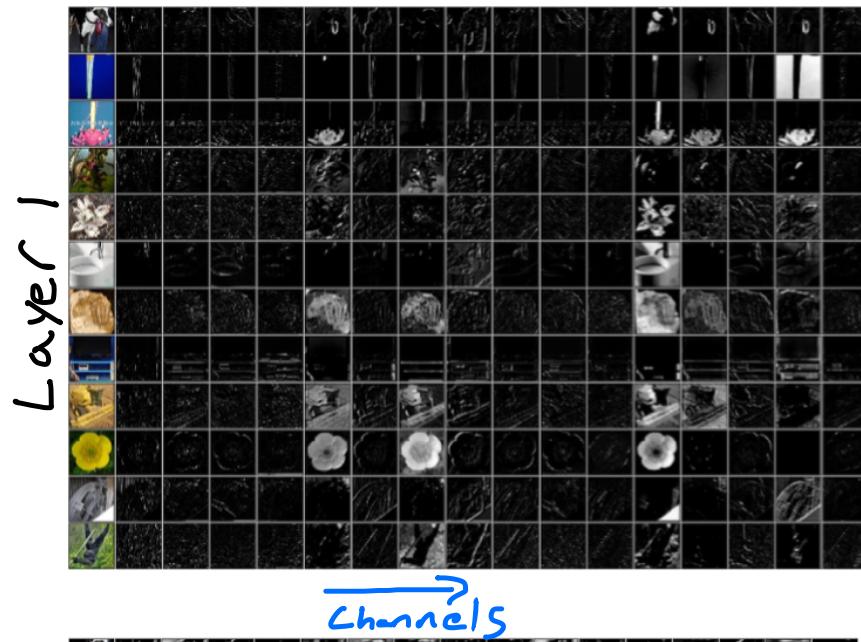
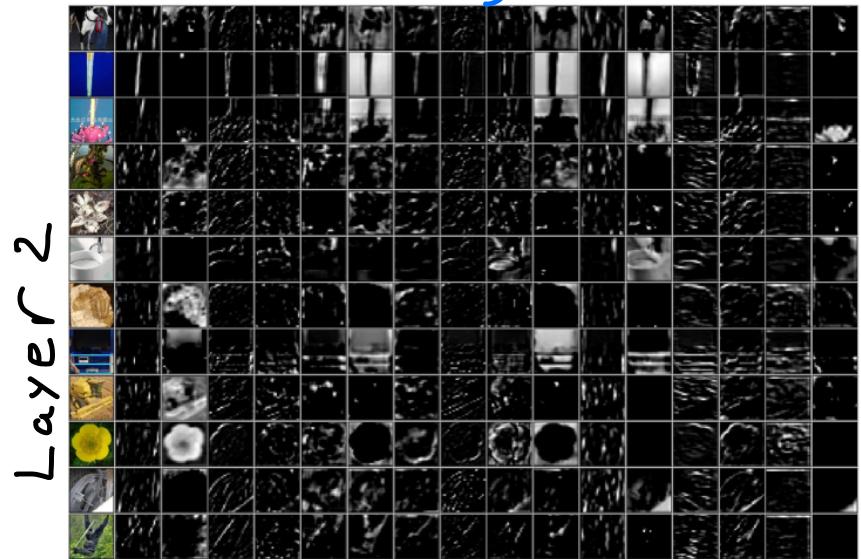
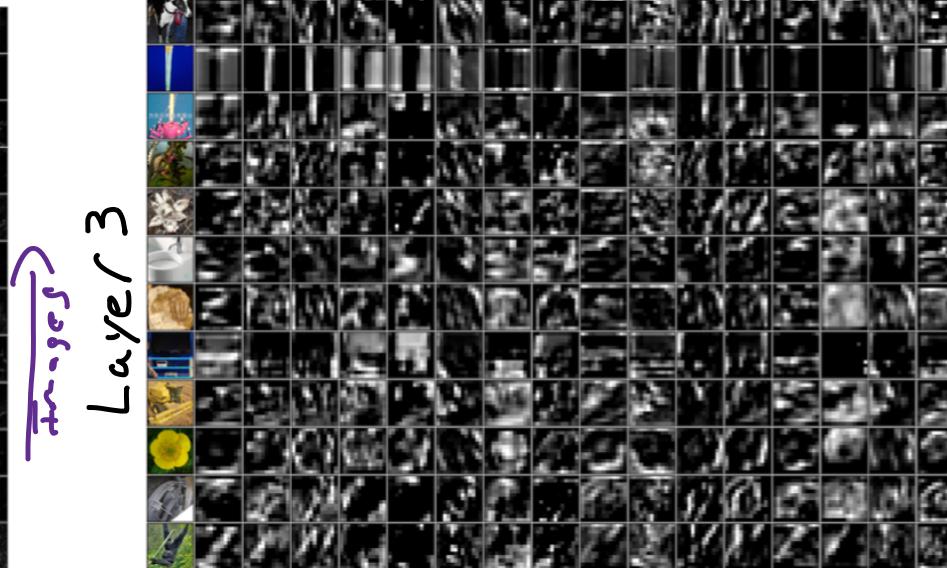
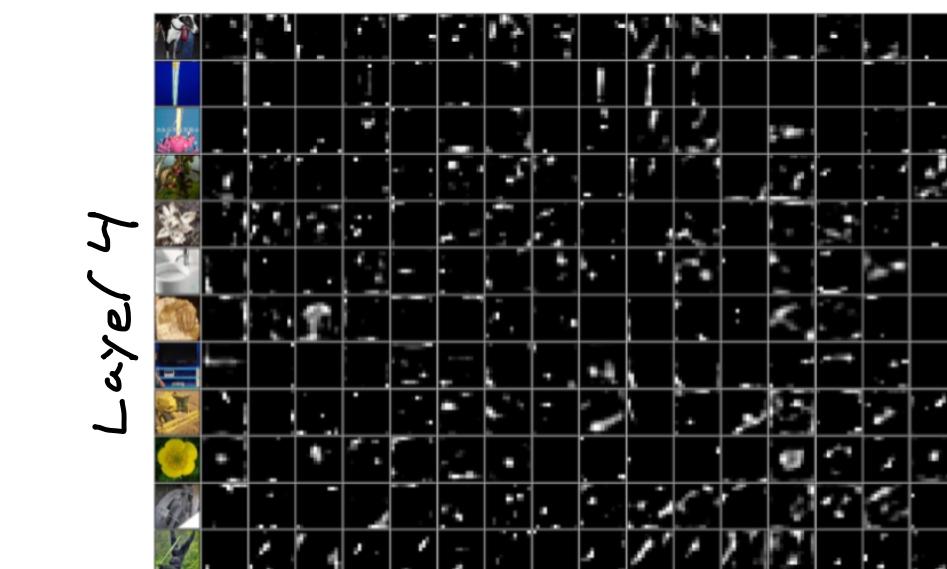


1000 Classes

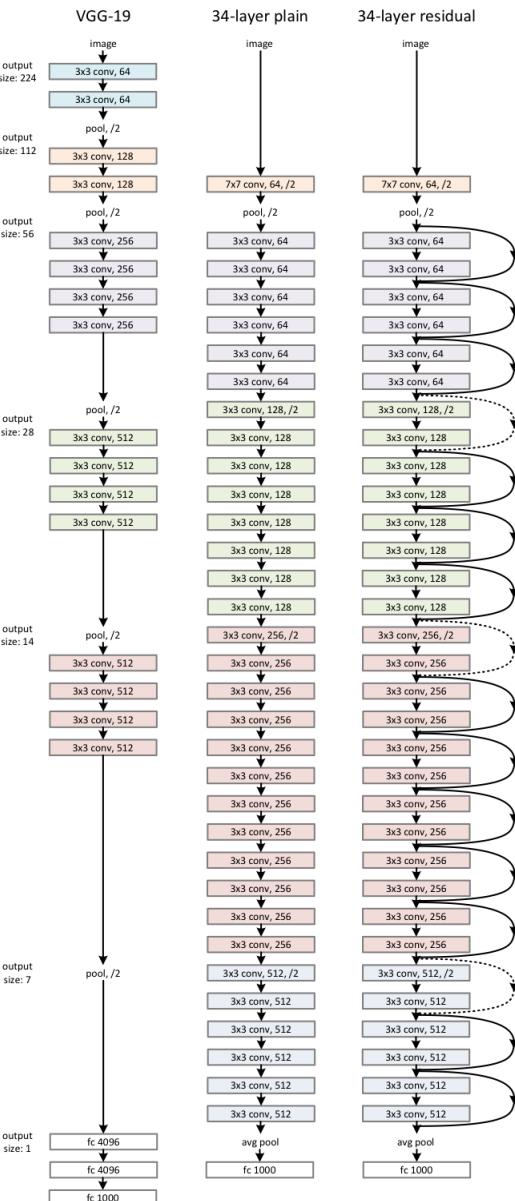


Learned kernels

CNN Features by Layer



Other Architectures



← VGG, Resnet-50, etc.

Wide Resnet ↓

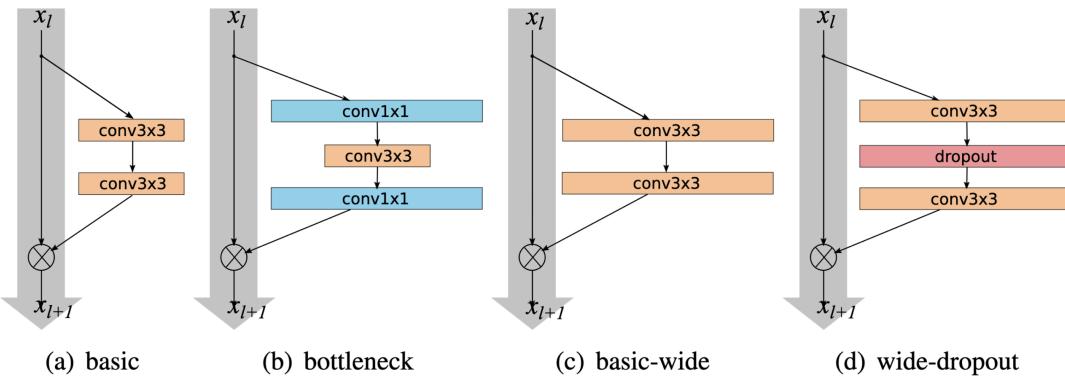


Figure 1: Various residual blocks used in the paper. Batch normalization and ReLU precede each convolution (omitted for clarity)

Many, Many more!

Data Augmentation

- It takes a lot of data to train good Image classifiers!
~ millions to billions of Images for general object recognition (1000+ classes)

Data Augmentation

- CNNs (Mostly) invariant to translation
 - What about scale, rotation, color etc. ?

↑
Astronaut

Still Astronaut!

- Still Shouldn't Change Class!

Data Augmentation

- Augment existing data by randomly
Scaling, rotating, Shifting colors etc.
- Much easier / than collecting ~10x The data
- Can do this as we train!

Common Augmentations

Rotation

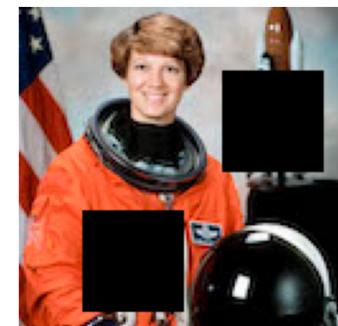
Crop

Color shift

Shift/ scale/ shear

Flip

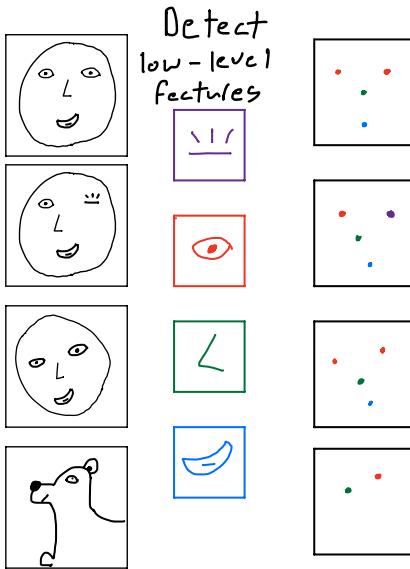
Cut-out



Mix-up

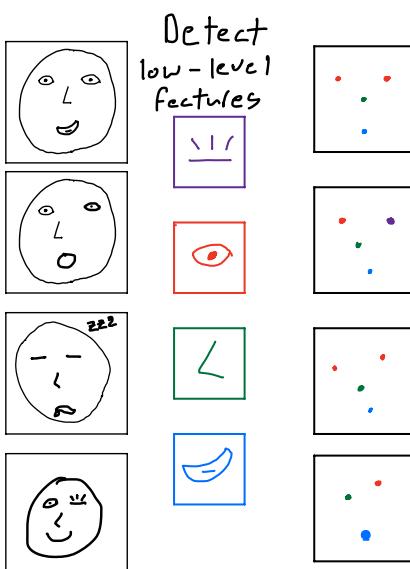
Fine Tuning

— Low-level features
can often be shared
between Models



... → Face?

...

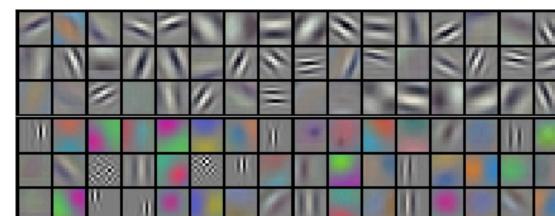


... → Smiling?

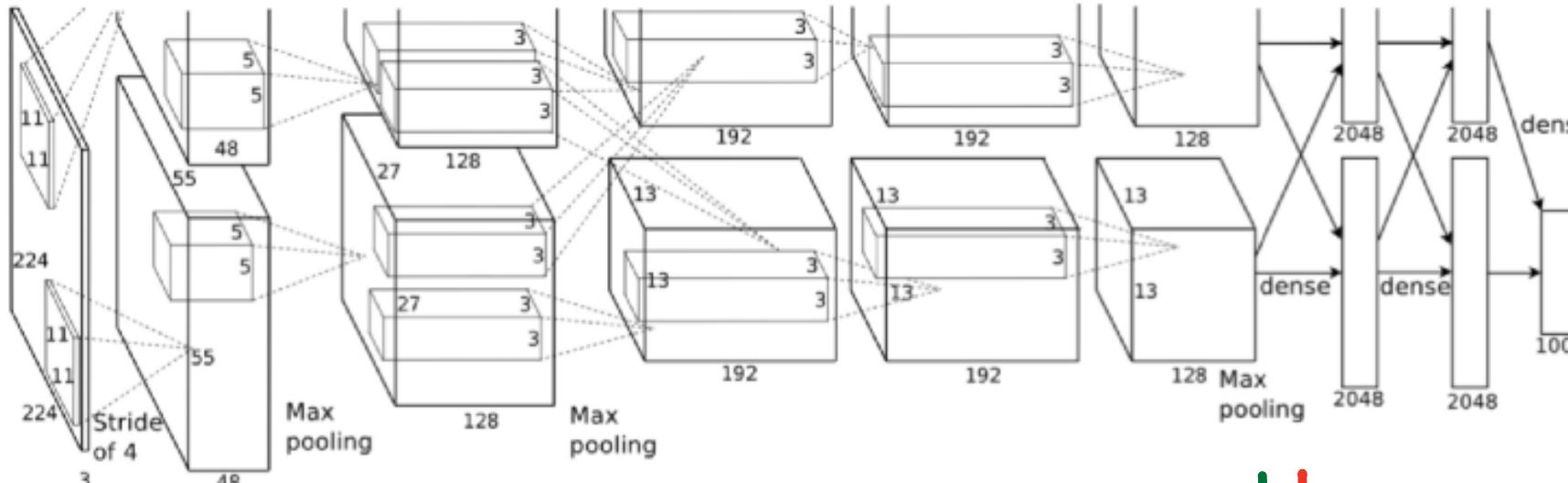
...

— Exploit this by copying
Convolutional layers from
a previously trained model

Actually more
like this! ↓



Fine Tuning For new task:



keep
Convolutional layers

Replace
Dense layers

Typical Approach, but could keep more or less

Fine Tuning

- Better Starting point for Optimization

