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Adam
Can we combine adaptive scaling and momentum?



Adam
Update velocity

Update scaling

Update weights

v(k+1) ⟵ β1v(k) + (1 − β1)∇wLoss(w(k), X, y)

s(k+1) ⟵ β2s(k) + (1 − β2)(∇wLoss(w(k), X, y))2

w(k+1) ⟵ w(k) − α
v(k+1)

√s(k+1) + ϵ



Adam
Update velocity

Update scaling

Modified weight update:

v(k+1) ⟵ β1v(k) + (1 − β1)∇wLoss(w(k), X, y)

s(k+1) ⟵ β2s(k) + (1 − β2)(∇wLoss(w(k), X, y))2

w(k+1) ⟵ w(k) − α

v(k+1)

(1−βk
1)

√ s(k+1)

(1−βk
2) + ϵ

learning rate

Ep velocity

scale



Adam
At step 0:

v(0) = 0, s(0) = 0

v(k+1)

(1 − βk
1)

=
β10 + (1 − β1)∇wLoss(w(k), X, y)

(1 − β1
1)

= ∇wLoss(w(k), X, y)
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Summary of gradient descent issues
Updates are too slow

• Stochastic/minibatch gradient descent

SGD gradients are very noisy (high variance)

• Increase batch size, use momentum

Stuck at saddle points or shallow optima

• Use momentum

Inconsistant scaling of the gradient

• Use RMSProp scaling



Exponential moving average (EMA)
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Exponential moving average (EMA)
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Exponential moving average (EMA)
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Exponential moving average (EMA) momentum
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Data normalization
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Data normalization



Data normalization



Data normalization



Data normalization
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Vanishing and exploding gradients
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Vanishing and exploding gradients
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Vanishing and exploding gradients HI
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Gradient clipping



Gradient clipping
Explicitly clip the gradient to prevent it form becoming too large.

clipvalue(x, ϵ) =
⎡⎢⎣min(max(x1, −ϵ), ϵ)

min(max(x2, −ϵ), ϵ)

⋮

⎤⎥⎦clipnorm(x, ϵ) = { ϵx
∥x∥2

if : ∥x∥2 > ϵ

x  if : ∥x∥2 ≤ ϵ

w(k+1) ⟵ w(k) − α clip(∇wLoss(w(k), X, y))

E limit
1 clip byvalue

e.g gradient enforce that
has length Σ

clipped
gradient
descent



Gradient clipping
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Normalization
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Batch normalization
Normalize over the batch:

Training time:

BatchNorm(x) =
x − E[x]

√Var[x] + ϵ

Batch: {x1, x2, . . . , xB}

E[x] ≈ x̄ =
1
B

B

∑
i=1

xi (sample mean)
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Batch normalization



Batch normalization
Biased estimator:

Unbiased estimator:

Var[x] ≈ s2 =
1
B

B

∑
i=1

(xi − ( 1
B

B

∑
i=1

xi))2

(sample var.)

Var[x] ≈ s2 =
1

B − 1

B

∑
i=1

(xi − ( 1
B

B

∑
i=1

xi))2

(sample var.)

BatchNorm
train

(x) =
x − x̄

√s2 + ϵ

samplemean



Batch normalization
Running estimate:

µ̄(k+1) ⟵ βµ̄(k) + (1 − β)x̄(k)

σ̄2(k+1) ⟵ βσ̄2(k) + (1 − β)s2(k)

BatchNorm
test

(x) =
x − µ̄

√σ̄2 + ϵ



Layer normalization
Normalize over the layer:

Training & test time:

LayerNorm(x) =
x − x̄

√s2 + ϵ
, x =

⎡⎢⎣x1

⋮
xd

⎤⎥⎦x̄ =
1
d

d

∑
i=1

xi (output mean)



Layer normalization
Biased estimator:

Unbiased estimator:

s2 =
1
d

d

∑
i=1

(xi − ( 1
d

d

∑
i=1

xi))2

(output var.)

s2 =
1

d − 1

d

∑
i=1

(xi − ( 1
d

d

∑
i=1

xi))2

(output var.)



Scaled normalization

BatchNorm(x) =
x − E[x]

√Var[x] + ϵ
γ + κ

LayerNorm(x) =
x − x̄

√s2 + ϵ
γ + κ


