Initialization

Gabriel Hope

Adam

Can we combine adaptive scaling and momentum?

Adam

Update velocity
v o Biv® 4 (1 - B1)VyLoss(w®, X, y)
Update scaling
st « BosF) 4 (1-— ﬁ2)(vaOSS(W(k)7 X,y))?
Update weights T

W(k+1)

Adam

Update velocity
v ﬁ1V(k) + (1 - ﬁl)VwLoss(w(k)’X,Y)
Update scaling
st « BosF) 4 (1-— 52)(VWLOSS(W(k)a X,y))?
Modified weight update: M;fﬂ [r/\j /\J\C

(k+1) Vl(/e¢

k:—l—l (_ W
g(k+1)
1-p5) S gcg/ﬁ

3s lk')
Adam v):P;V_ +0-BT,
At step O: K=* /

/ D,

v =0, s =90

(k+1) 0+ (1 ﬁ/va W, X
Vv _ /31 + (1) OSS(W ’ ’y) — VWLOSS(W(k)7 X—7 Y)

e

Summary of gradient descent issues

Updates are too slow

e Stochastic/minibatch gradient descent

SGD gradients are very noisy (high variance)

¢ |ncrease batch size, use momentum

Stuck at saddle points or shallow optima

e Use momentum

Inconsistant scaling of the gradient

e Use RMSProp scaling

Exponential moving average (EMA)

True fone. Lie 3AJ) Cv/utute eTa.j
o]‘&ldbﬂ]

_ plcervedk [Neise fron sempliy lir
How t2°

! et Cotfedl
Velue?
- £,
- O+
_ — l
Time T

Exponential moving average (EMA)

Tles |

C,gmlll be,
noisy

Cuse col.
/% obse/ Ution

‘F o~ D+
_|—
L ouervdvn ot dimg 4

Exponential moving average (EMA)

Ldec 2 [Bon ovy. |

Daeﬁn(”' &quﬂ* FD{/I
‘oo W.ngle
CJ'I“-,\ Q.,Ul : .
0T TN

(ecent o0bs,
)

6‘5*\"‘%1’ Time T
N

fxwZ ©

J T ©
e Avelise LS. oW/ aiobhow obsizer/

VR

Exponential moving average (EMA) 2 Wedlf — /
<o 5

.2 [EMA
Liee2 L ER foty weighted T
A oves entife histely werg . —
‘ok:e{:gj/ cy! | | - i W= ok
- 420

LK

) | T i é[o)
; M Time ,_‘l' ok o)]
W /L-“t’- RSO
L pree, ot +-1

[
Gq'} M‘l'"(— L‘J’ "h\kt/ ~|—

Exponential moving average (EMA)
-

—

Time

I
1

_l—
Gp= (=) Or + ot 5

N,

Ex. ‘V”‘V

-P) o.lop+ 0.09%__| + 0. 0%l Of,?_+a,o7-a7 O;_

(1-2)0, + (-Qao, +!(- Ot

s

5r, =) 0), 1S,

=2 .

-ri Qf‘*log

Data normalization

/X@ - lf/ka i Jfﬁ\ €@/) = Z}X.?r/_j

New/ O W/ Samal] Veriame L —

—D %X
———-> D@c)b—S[M bmwﬂ«lvf/ Ace/ (o/ o>

Data normalization

Reluy= mer (o, X))
= xXxx|x
é;’éng X XK
. / \/—\r_____/

FLt Panc. noa- line=/

Data normalization

oY= Ten |

XAAK KK X x X X K
T TR AR e BAKR R IR
FIC_“_ _‘_ / \/-\(_\)
line/ fH‘

KT 0 \/\/_’/ O'CX):L’]

NoN—linec/

Data normalization

ek
x09
O’UC)”-‘J/)L l/ l

KA AKX Wﬁﬂﬂx&xl

Data normalization

B P X'J . Xu -
O o BPo, /‘/ N
e l =
g W 2. X; &0
Shif + Ao (=t Lt~
Yo (eeson<ble loe, W, 2 /\//
V4 .Z[Y;-X ~
A JG _
&% x /(
Z 002 A/O/Mclmé,'ho'/\ v D/
0" X: — X, - #52_()(1
‘/7'7?‘[)(;-573

D@"v/;szm bow/\«lvff MNee/ (o/ 03

Vanishing and exploding gradients

Jl;:c[>ZW,+b L=Loss(+)
L Loy

Vanishing and exploding gradients

AL 4o da Jo, do, JE UL

\V~+—~
— I:-'a-[;(w, i) = X o (% #h)

Jw,— & Th 3o, T, Iy AP
l/\——-——r-\—d

L A0\ It AL
Lo, — KULNH.., Tj‘/j DQ‘;[I":

—

14,/\[

= J¥0

4
I

'm\%M

Vanishing and exploding gradients

T M7 —fpl

l«":N\"

\77l

é/‘uol |€A+ eX PIOJCS

I‘P /\/\4 I —) lo\\J A
G(\a 73/1')— \/o\/llﬁb\e/e

[3,1h bad for g(;.ol{e/:}’ descent”!

|
A

. exp o-‘ﬂﬁ

— Very Steef los9
‘['hl\cfl‘vaﬂ

2 '

Gradient clipping

| Vil

2-Nolm =5 Vethu/ lenl,

Wi= = v;*

Gradient clipping i

2\
Explicitly clip the gradient to prevent it form becoming too large. ¢-

Cp Ly Udwe

min(max(z1, —€), €)

clip e (X7 6) = | min(max(z2, —€), €)
G > Aiond- : _én

1|2

Clipnorm (X, 6) - if || || <
[X if: ||x||, <€
Cl-pled
vI\A— — wktD) o wk) _ clip (VWLOSS(W(k)7 X, Y))

Lol O na}’ K

{ ex ifs HXH2 S € e 'e"bﬂ‘ E

Gradient clipping

- 0/}3 l'/lﬁ-’l

§rdoent—

—Clip by nefm

Normalization

p—— o

AR L

. . X Vadx
Batch normalization e % z;‘} &)
Normalize over the batch: OWNM‘ ~x
%

3 Cve /E&?
E — ‘
BatchNorm(z) = . B & & be
Var
\/] L/ﬂzuth
Training time: o, L]I (w)
Batch: {z1,x,,..., rp}
1 B
Elz]) ~ Z = E z; (sample mean)
)
ya

ol Coired 29, mec e

W (D/b&/‘/\&\’\ [CD&E
Cold (o Whe LD Jub g

Batch normalization -~

o/

— A XK
Anfo Jist Shitts | ——
/o
gk T Y ol T\
XX < X K

Batch normalization

Batch normalization
Biased estimator: /

Unbiased estimator:

BatchNorm(z) = ——
train 82 + €

Batch normalization

Running estimate:
attY — pa® + (1 - gz

5_2(k+1) « 55_2(1{:) + (1 o ,B)Sz(k)

BatchNorm(z) = i

test

%
+
(@)

Layer normalization

Normalize over the layer:

Training & test time:

X —x

\/82—|—6,

LayerNorm(x) = X =

1 d
T = 7 Z z; (output mean)
i—1

L1

Ld

Layer normalization

Biased estimator:

s? = %Ed: (wz — (% ixz))z (output var.)

Unbiased estimator:

s = ﬁ zd: (wz — (% Zd:asz))Q (output var.)

Scaled normalization

—E
BatchNorm(z) = ” 2 Y+ K

\/ Var[z] + ¢

X —

Vs2+e

LayerNorm(x) = v+ K

