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Adam

Can we combine adaptive scaling and momentum?



Adam

Update velocity
v o Biv® 4 (1 - B1)VyLoss(w®, X, y)
Update scaling
st « BosF) 4 (1-— ﬁ2)(vaOSS(W(k)7 X,y))?
Update weights T

W(k+1)




Adam

Update velocity
v ﬁ1V(k) + (1 - ﬁl)VwLoss(w(k)’X,Y)
Update scaling
st « BosF) 4 (1-— 52)(VWLOSS(W(k)a X,y))?
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Summary of gradient descent issues

Updates are too slow

e Stochastic/minibatch gradient descent

SGD gradients are very noisy (high variance)

¢ |ncrease batch size, use momentum

Stuck at saddle points or shallow optima

e Use momentum

Inconsistant scaling of the gradient

e Use RMSProp scaling



Exponential moving average (EMA)
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Exponential moving average (EMA)
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Exponential moving average (EMA)
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Exponential moving average (EMA) 2 Wedlf — /
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Exponential moving average (EMA)
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Data normalization
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Data normalization

Reluy= mer (o, X))
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Data normalization
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Data normalization
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Data normalization
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Vanishing and exploding gradients
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Vanishing and exploding gradients
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Vanishing and exploding gradients
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Gradient clipping
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Gradient clipping i

2\
Explicitly clip the gradient to prevent it form becoming too large. ¢-
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min(max(z1, —€), €)

clip e (X7 6) = | min(max(z2, —€), €)
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Gradient clipping
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Normalization
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Batch normalization -~
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Batch normalization




Batch normalization
Biased estimator: /

Unbiased estimator:

BatchNorm(z) = ——
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Batch normalization

Running estimate:
attY — pa® + (1 - gz
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Layer normalization

Normalize over the layer:

Training & test time:
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Layer normalization

Biased estimator:

s? = %Ed: (wz — (% ixz))z (output var.)

Unbiased estimator:

s = ﬁ zd: (wz — (% Zd:asz))Q (output var.)



Scaled normalization
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