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Figure 2: Connections between distributional stability and BatchNorm performance: We compare
VGG networks trained without BatchNorm (Standard), with BatchNorm (Standard + BatchNorm)
and with explicit “covariate shift” added to BatchNorm layers (Standard + “Noisy” BatchNorm).
In the later case, we induce distributional instability by adding time-varying, non-zero mean and
non-unit variance noise independently to each batch normalized activation. The “noisy” BatchNorm
model nearly matches the performance of standard BatchNorm model, despite complete distributional
instability. We sampled activations of a given layer and visualized their distributions (also cf. Figure.
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(a) loss landscape (b) gradient predictiveness (c) “effective” B-smoothness

Figure 4: Analysis of the optimization landscape of VGG networks. At a particular training step,
we measure the variation (shaded region) in loss (a) and /5 changes in the gradient (b) as we move
in the gradient direction. The “effective” S-smoothness (c) refers to the maximum difference (in
£2-norm) in gradient over distance moved in that direction. There is a clear improvement in all of
these measures in networks with BatchNorm, indicating a more well-behaved loss landscape. (Here,
we cap the maximum distance to be n = 0.4 x the gradient since for larger steps the standard network
just performs worse (see Figure|[I). BatchNorm however continues to provide smoothing for even
larger distances.) Note that these results are supported by our theoretical findings (Section 4).
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(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.
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Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.



