Linear regression, gradient
descent & maximum likelihood



Setup

Example: Appendicitis diagnosis

Input Prediction

Appendicitis?
ﬁ Ve / No

Neural network

Patient

Some notation:

Input: x — Output:y, y= f(x)
predict
Prediction function



Dataset

Set of known inputs and outputs

Some notation:

D = {(x1,v1), (X2,%2), ... (Xn,yn)}



Dataset

Set of known inputs and outputs

Patient 1
Age: 9.61

Patient 3
Age: 10.75

Patient 2
Age: 5.11

9)
9)

Pain: no Y Pain: no Y Pain: no
RBC: 5.18 b eS RBC: 4.55 9 es RBC: 4.79
. Peritonitis: local

Peritonitis: local ¥ o Peritonitis: no

Patients with abdominal pain Diagnosis
Age Appendix Size Migratory Pain RBC Count RBC Urine Peritonitis Diagnosis
0| 961 9.0 no 5.18 high local 0| appendicitis
1| 5.11 7.0 no 456 medium  local 1/ no appendicitis
21075 5.0 no 4.79 none no 2 | no appendicitis
31051 9.0 no 5.03 | none local 3 | no appendicitis
4 7.3 6.2  yes 4.64 low no 4 | appendicitis
51521 8.5 yes 462 low no 5 | no appendicitis
6| 15.83 12.0 yes 4.33 high no 6 | no appendicitis
In ut table 7| 958 7.0 yes 5.04  low generalized Output table 7 | no appendicitis
p 8| 10.37 55 no 4.8 none no 8 | no appendicitis
9| 16.66 9.0 yes 5.31 none no 9 | appendicitis
10| 14.52 4.5 yes 4.9 none no 10 | appendicitis
11[10.74 9.0 no 5.66 none local 11 | no appendicitis
12| 12.41 3.7 no 5.49 none no 12| no appendicitis
13| 6.67 35 no 5.27 none no 13 | no appendicitis
14| 14.36 9.0 yes 4.84  low local 14 | appendicitis
15| 9.04 5.3 yes 4.92 | low no 15 | no appendicitis
16 | 12.43 12.0 | yes 4.62 | none generalized 16 | appendicitis




Mathematical abstraction

As table
Patients with abdominal pain
Age Appendix Size Heighti Weight RBC Count Temperature WBC Count
0| 16.66 9.0 174.0 65.0 5.31 36.6 6.6
1| 10.74 9.0 146.0 57.5 5.66 37.3 10.2
2| 9.04 5.3 1340 29.4 4.92 36.0 5.1
Observation 5 5.0 155.0 54.5 4.79 37.7 10.3
- 3 6.2 123.0 23.5 4.64 37.4 21.1
L:- 5.11 7.0 116.0 22.0 4.55 40.2 19.4
"14.36 50 163. 50.0 182 375 123
7| 9.61 9.0 140.0 29.2 5.18 38.7 14.3
8|15.83 12.0 153.0 59.0 4.33 36.7 12.8
9| 958 7.0 1320 24.7 5.04 38.4 13.5
10| 10.37 55 156.G 39.0 4.8 37.4 5.6
11| 14.52 45 181.0 55.0 4.9 37.0 9.0
12| 12.41 3.7 150.5 425 5.49 37.2 9.1
13| 6.67 35 1240 38.5 5.27 39.6 16.8
14| 15.21 8.5 155.0 85.0 4.62 36.8 12.4
15| 12.43 12.0 157.0 46.0 4.62 37.1 16.4
16| 10.51 9.0 134.5 27.0 5.03 37.4 12.8
Feature

Observation

X

N x d Matrix;: X e RVxd

C

[ 16.66
10.74
9.04
10.75
73
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9.0
9.0
53
5.0
6.2
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174.0
146.0
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123.0
116.0

65.0
57.5
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235

As matrix

5.31
5.66
4.92
4.79
4.64

36.6 6.6 |
37.3 102
360 5.1
377 103
37.4 21.1

22.0

4.55

40.2 194

14.36
9.61

15.83
9.58

10.37
14.52
12.41
6.67

15.21
12.43

1051

M

9.0
9.0
12.0
7.0
5.5
4.5
3.7
35
8.5
12.0
9.0

163.0
140.0
153.0
132.0
156.0
181.0
150.5
124.0
155.0
157.0
134.5

50.0
29.2
59.0
247
39.0
55.0
42.5
38.5
85.0
46.0
27.0

4.84
5.18
4.33
5.04
4.8

4.9

5.49
5.27
4.62
4.62
5.03

Feature

d

(features)

375 143
38.7 14.3
36.7 12.8
38.4 13.5
374 5.6
37.0 9.0
372 9.1
39.6 16.8
36.8 124
37.1 164

374 12.38]

(Obs.)



Mathematical abstraction

Labels become a vector

Output table
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Patient 5
Age: 5.11

Pain: no

RBC: 4.55

Peritonitis: local

, Yes

ys =1
/

Index
(Obs.)



Quantitative outputs: Regression

Input Prediction
(Regression)

Length of hospital stay
ﬁ 24hrs? 36hrs? ...

Neural network

Patient

D — {(xl,y1), (x27y2)7 (XN,yN)}

Output domain: 'y € R



Input: x — Output: v,
predict

y = f(x)

Prediction function



A

MPG
Honda Accord: i — MPG: 33mpg °
Displacement: 24L Honda Accord
0-60mph: 7.8 Sec °
Weight: 3800 lbs \ .
Dodge Aspen: orsepower: 155 HP — MPG: 21mpg Q/
Displacement: 3.2L \l\

- . <
0-60mph: 6.8 Sec \ . 7

- Dodge Aspen

mpo[y Weight (1bs)
1 1 1 r—?_\



Dataset: D = {(x;, ;) fori € 1... N} mpg = f(Welght, horsepower. .o )

Weight | (_/7\ \_(

Input: x; = Horsepower ,  Output: y; = MPG

Displacement
. 0-60mph




M PG /

Honda Accord

Dodge Aspen

Weight (lbs)

|

Voo b






L tnews f@;/é%é'w\

Dodge Aspen

eight (lbs)

|




A linear functionis any function f where the following conditions always hold: A

fx+y) =)+ 1)

and

fax) = af(x)

For a linear function, the output can be defined as a weighted sum of the inputs. In other words a linear function T
of a vector can always be written as:

NTo]) 3D 45(2) =T




We can add an offset b to create an affine function:

f(x) = i r,w; +b

NCN UV

In numpy we can easily write a function of this form:

def f(x):
w = np.array([-0.6, -0.2])
b = -1

return np.dot(x, w) + b -



Z1 w1
Z2
X2 w2
X = — Xqug = | : and w=
Tn
Ty 1 Wy,

We can easily see then that using this notation:

— Waug =

(x) = xTw+b= xaTugwaug







A

MPG
Linear regression is the approach of modeling an unknown function with a linear function. From our discussion
of linear functions, we know that this means that we will make predictions using a function of the form: °
n Honda Accord
f(x) = xTw = Zmiw,— °
i=1 1
°
Meaning that the output will be a weighted sum of the features of the input. In the case of our car example, we
will make predictions as:
Predicted MPG = f(x) =
°
(weight)w; + (horsepower)w; + (displacement)ws + (0-60mph)w, + b ° Dodge Aspen
Or in matrix notation: o 1
Weight w1 °
Horsepower Woy
f(x) = |Displacement | - |w; Weight (1bs)
0-60mph w4y L L 1 |

1

Tk [\L PMWM@IU(} K,w/)y>
ol sepuitian



flr) =wz+b

onda Accord

Weight (lbs)

|




f(x) = ia}i’wi +b
i—1

We typically refer to w specifically as the weight vector (or weights) and b as the bias. To summarize:

Affine function: f(x) = x"w + b, Parameters: (Weights: w, Bias: b)

class Regression:
def __init__ (self, weights):
self.weights = weights

def predict(self, x):
return np.dot(x, self.weights)

A

MPG

flx)=wx+b

Weight (lbs)

|



The residual or error of a prediction is the difference between the prediction and the true output:

A\vipc

€ =Y — f(xi)

—_—

flr) =wx+0b

Honda Accord

Dodge Aspen

Weight (lbs)

|




L a9> '74//\67[/‘0/\

D = {(Xl,y1), (X2,y2), (XN,yN)}

nean Genled Eite/
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D = {(x1,91), (x2,¥2), ---
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N
Loss(w) = MSE(w,X,y) = % Z(X;TPW — i)
i—1

T
w* = argmin Loss(w) = argminﬁ Z(x?w —;)?
w w i=1

MPG

3
Ronda Accord
e

flz)=wz+b

Badge Aspen

Weight (1bs)
L |

Loss(w)




Find: w* = argmin f(w)

’l 1 n h &,[ ? w75
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;/) /e dt ro-
g
/ BeseaAl])




Find: w* = argmin f(w)

wit) — w® 4 g
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Find: w* = argmin f(w)

Loss(w)

2

\ Y
N

w1

=
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Find: w* = argmin f(w)



The gradient of a vector-input function is a vector such that each element is the partial derivative of the function
with respect to the corresponding element of the input vector. We’ll use the same notation as derivatives for

gradients.
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The gradient of a vector-input function is a vector such that each element is the partial derivative of the function

with respect to the corresponding element of the input vector. We’ll use the same notation as derivatives for
gradients.
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The gradient of a vector-input function is a vector such that each element is the partial derivative of the function
with respect to the corresponding element of the input vector. We’ll use the same notation as derivatives for

gradients.
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The gradient of a vector-input function is a vector such that each element is the partial derivative of the function

with respect to the corresponding element of the input vector. We’ll use the same notation as derivatives for
gradients.
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The gradient of a vector-input function is a vector such that each element is the partial derivative of the function

with respect to the corresponding element of the input vector. We’ll use the same notation as derivatives for
gradients.
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Find: w* = argmin f(w)

Forizin1,...,T :

W

Loss(w)

w1






Find: w* = argmin f(w)

Forizin1,...,T:
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Recall that it’s minimum value w*, a function f musthave a gradient of 0.
Vi(w*)=0
It follows that:

w'=w" - Vf(w")

While Vf(w?) £0: wi™ « w® — vf(w)

15

1.0

Loss(w)
AN
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w1



Recall that it’s minimum value w*, a function f musthave a gradient of 0.
Vi(w*)=0
It follows that:

w'=w" - Vf(w")

While ||V f(w®))|, g w(iD)  wl) — v f(wl)

Loss(w)
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d—f = lim max f(w + e) — f(W)
AW =0 o<y €[ 2
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V. MSE(w,X,y) = (i 3w — )’

dw

N
- D

With this gradient our gradient descent update becomes:

N
with)  w ( ) Z (xFw(®
1=1



d [1 &
VWMSE(W, X7 Y) — W (F Z(X'LTW - y2)2>
1=1

9 N
- N Z(XZTW — Yi)Xi
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We know that at the minimum, the gradient must be 0, so the following condition must hold:
2\ <L, 1
=1

1=
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Weight
Input: x; = Horsepower ,  Output: y; = MPG
Displacement

0-60mph

Predicted MPG = f(x) =

(weight)w; + (horsepower)ws + (displacement)ws + (0-60mph)w,




1 1 )
p(y) = ———exp| — 272(3/ — 1)

o\ 2T

Normal distribution

34.1% | 34.1%










ply) = — exp(—%‘z(y—u)2>

oV 2T

Y; ~~ N(x;-rw, 02)

1 1 T \9
| X, W) = e — —(y; —x; W
p(yi | x;, W) o/ Xp( 202 (i ) )

w* = argmax p(y | X, w) = argmax p(y1,...,yn | X1,..., XN, W)
W W



w* = argmax p(y | X, w) = argmax p(y1,.--,Yn | X1,-- -, XN, W)
W W

N N
argmax [ [ p(yi | xi, w) = argmin — Y log p(y; | xi, w) = NLL(w, X, y)
=1 w

w i i=1






d (1 &
VwNLL(w,X,y) = 7 ( 5 Z(yl —xjw)?+ NlogoV 277)
W\ 20° —



argmin M SE(w,X,y) = argmin NLL(w, X, y)



