Linear regression, gradient
descent & maximum likelihood

Setup

Example: Appendicitis diagnosis

Input Prediction

Appendicitis?
ﬁ o /N

Neural network

Patient

Some notation:

Input: x — Output:y, y= f(x)
predict
Prediction function

Dataset

Set of known inputs and outputs

Some notation:

D = {(x1,%1), (X2,92), -+ (XN, UN)}

Dataset

Set of known inputs and outputs

Patient 1
Age: 9.61

Pain: no
RBC: 5.18

Peritonitis: local

Age

Patients with abdominal pain

s YES

Appendix Size Migratory Pain RBC Count

9)

9)

RBC Urine Peritonitis

o

9.61

—h

5.11
10.75
10.51

7.3
15.21
15.83

9.58

Input table

10.37

© 0 N O 0o ~ O D

16.66

Y
o

14.52

—h
-—h

10.74

-h
N

12.41

-y
(7]

6.67

-
E N

14.36
9.04

iy
(4]

-h
(=]

12.43

9.0
7.0
5.0
9.0
6.2
8.5
12.0
7.0
5.5
9.0
4.5
9.0
3.7
3.5
9.0
5.3
12.0

no
no
no
no
yes
yes
yes
yes
no
yes
yes
no
no
no
yes
yes

yes

5.18
4.55
4.79
5.03
4.64
4.62
4.33
5.04

4.8
5.31

4.9
5.66
5.49
5.27
4.84
4.92
4.62

high
medium
none
none
low
low
high
low
none
none
none
none
none
none
low
low

none

local
local
no
local
no
no
no
generalized
no
no
no
local
no
no
local
no

generalized

Patient 2
Age: 5.11

Pain: no
RBC: 4.55

Peritonitis: local

Output table

Diagnosis

Diagnosis

© 00 N O a A~ O DN

G (TS G R GO P G AT G S | P §
o g A~ O N == O

appendicitis
no appendicitis
no appendicitis
no appendicitis
appendicitis
no appendicitis
no appendicitis
no appendicitis
no appendicitis
appendicitis
appendicitis
no appendicitis
no appendicitis
no appendicitis
appendicitis
no appendicitis

appendicitis

Patient 3
Age: 10.75

Pain: no
RBC: 4.79

Peritonitis: no

Age

Appendix Size Heightt Weight

As table

Patients with abdominal pain

Mathematical abstraction

BC Count Temperature WBC Count

2

16.66
10.74
9.04

Observatlon

9.61
15.83

0.58
10.37
14.52
12.41

6.67
15.21
12.43
10.51

9.0
9.0
5.3
5.0

9.0
12.0
7.0
5.5
4.5
3.7
3.5
8.5
12.0
9.0

174.0
146.0
134.0
155.0

123.0

140.C
153.0
132.C
156.0
181.0
150.5
124.0
155.0
157.0
134.5

Feature

5.31
5.66
4.92
4.79
4.64

5.18
4.33
5.04

4.8

4.9
5.49
5.27
4.62
4.62
5.03

36.6
37.3
36.0
37.7
37.4

38.7
36.7
38.4
37.4
37.0
37.2
39.6
36.8
37.1
37.4

6.6
10.2
5.1
10.3
21.1

14.3
12.8
13.5

5.6

9.0

9.1
16.8
12.4
16.4
12.8

Observation

N x d Matrix;: X e R/Vxd

(16.66 9.0
10.74 9.0
9.04 5.3
10.75 5.0

14.36 O.
9.61 9.0

9.58 7.0
10.37 5.5
14.52 4.5
12.41 3.7
6.67 3.5
15.21 8.5

10.51 9.0

N—mr

15.83 12.0 153.0

12.43 12.0 157.0

As matrix

174.0
146.0
134.0
155.0
123.0

57.515.66 37.3 10.2
2941492 360 5.1

5451 4.79 37.7 10.3
2350 4.64 374 21.1

7.3 62
511 7.0 116.0 455 402 19.4
9.0

163.0
140.0

50.01 4.84 375 14.3
29.21 5.18 38.7 14.3
59.014.33 36.7 12.8
2471 5.04 38.4 13.5
390 48 374 5.6

55.0) 49 37.0 9.0

42.515.49 37.2 O.1

3851 5.27 39.6 16.8
85.014.62 368 124
46.0§ 4.62 37.1 164

132.0
156.0
181.0
150.5
124.0
155.0

134.5

Feature

d

(features)

65.0| 5.31 366 6.6

27.005.03 374 12.8

(Obs.)

Mathematical abstraction

Age: 5.11

Labels become a vector e, |, YES

Peritonitis: local

Diagnosis Diagnosis
Diagnosis Diagnosis i 1 i
0 | appendicitis 0 1 0
1 | no appendicitis 1 0 0
2 | no appendicitis 2 0 0
3 | no appendicitis 3 0
4 | appendicitis 4 1 0
5 | no appendicitis 5 0 0 ys — 1
6 | no appendicitis 6 0 0
Output table 7 ~== Gonverted - ° y= |94)N i
8 | no appendicitis 8 0 1 (Obs.)
9 | appendicitis 9 1 1 (ObS)
10 | appendicitis 10 0 0
11 | no appendicitis 11 0 0
12 | no appendicitis 12 0 0)
13 | no appendicitis 13 0 1
14 | appendicitis 14 1 0
15 | no appendicitis 15 0 _1_
16 | appendicitis 16 1

Quantitative outputs: Regression

Input Prediction
(Regression)

Length of hospital stay
ﬁ 24hrs? 36hrs? ...

Neural network

Patient

D = {(x1,y1), (x2,92), --- (xx,n)}

Output domain: 'y & R

Input: x

?
predict

Output: v,

y = f(x)

Prediction function

Honda Accord:

Dodge Aspen:

Weight:
Horsepower:

Displacement:
. 0-60mph:

Weight:
Horsepower:
Displacement:

0-60mph:

2500 1bs |
123 HP
2.4 L

7.8 Sec._

3800 lbs
155 HP
3.2 L
6.8 Sec

— MPG: 33mpg

— MPG: 21mpg

Dataset: D = {(x;, y;) fori € 1... N}

Input: x; =

Weight
Horsepower

Displacement

0-60mph

)

Output: y; = M PG

mpg = f(weight, horsepower...)

M PG

Honda Accord

Dodge Aspen

Weight (lbs)

|

M PG

Honda Accord
0

* Dodge Aspen
O

Weight (lbs)

|

A linear functionis any function f where the following conditions always hold:

fx+y)=fx)+ f(y)

and

f(ax) = af(x)

For a linear function, the output can be defined as a weighted sum of the inputs. In other words a linear function
of a vector can always be written as:

f(x) =) ziw,
=1

We can add an offset b to create an affine function:

1=1

In numpy we can easily write a function of this form:

def f(x):
w = np.array([-0.6, -0.2])
b = -1

return np.dot(x, w) + b -

- L1 - wq
L1 w1
9 w9
i) w9
X=| | — Xaug = | : and w = | Wawg =
mn w'n
Ty, 1 | W, - b

We can easily see then that using this notation:

f(x)=x'w+b= xfugwaug

3, _1 yE= f(x)
f(X) = ?3561 — 3332 — 1 A_

Linear regression is the approach of modeling an unknown function with a linear function. From our discussion
of linear functions, we know that this means that we will make predictions using a function of the form:

f(x) =x"'w= Z T;W;
i=1

Meaning that the output will be a weighted sum of the features of the input. In the case of our car example, we
will make predictions as:

Predicted MPG = f(x) =

(weight)w; + (horsepower)ws + (displacement)ws + (0-60mph)w, + b

Or in matrix notation:

Weight w1
Horsepower (P

f(x) = Displacement | * | w3
0-60mph Wy

i 1 l Lb._

Jonda Accord

f(x) =wzx + b

SQdge Aspen

Weight (lbs)

|

T
f(X) — Z L;Wj T b $arpe f(x) =wx+0
1=1 |

We typically refer to w specifically as the weight vector (or weights) and b as the bias. To summarize: | \:

Affine function: f(x) = x’w +b, Parameters: (Weights: w, Bias: b)

Weight (lbs)

_

class Regression:
def init (self, weights):
self.weights = weights

def predict(self, x):
return np.dot(x, self.weights)

The residual or error of a prediction is the difference between the prediction and the true output:

e; = Yi — f(xi)

f(x) =wx +b

Honda Accord

Dodge Aspen

Weight (lbs)

|

X1 11 L12

xg L21 L22
X_ — —

x4 x X

LA A7 -L N1 N2

. L Nn-

LY N -

(XNny)}
yl
Y2
y=1.

A]\[PG

f(z) =wx+0b
1 ZN . , :
LOSS(W) pm— MSE(W, X, Y) p— N (x’l, W —_— yz) \. Konda Accord
1=1 T .
¢ ’ Podge Aspen
Weight (lbs)
N Loss(w)
1 AN
w" = argmin Loss(w) = argmin— E (xI'w — y;)? 2
N [/ yz
hd w i=1

N
Oy

S

Find: w* = argmin f(w)

Find: w* = argmin f(w)

Loss(w) \/K

O
g,

/1'0
QP
1.5 _

Q¢

-
S,

Find: w* = argmin f(w)

wl) w0 _ Vf(w(o))

Loss(w)

OON

VG

\,Qé‘l
4

Find: w* = argmin f(w)

The gradient of a vector-input function is a vector such that each element is the partial derivative of the function
with respect to the corresponding element of the input vector. We’ll use the same notation as derivatives for

gradients.
- o
Oy
of
a _ =
dx of
6263
L1 6 -
T X X =
: 8(131

The gradient of a vector-input function is a vector such that each element is the partial derivative of the function
with respect to the corresponding element of the input vector. We’ll use the same notation as derivatives for

gradients.
df
dx
£1
T 6 XTX -
: 8(131
L3

of
oz 1

of
833 2

of
8:1: 3

The gradient of a vector-input function is a vector such that each element is the partial derivative of the function
with respect to the corresponding element of the input vector. We’ll use the same notation as derivatives for

gradients.

df
dx

of
oz 1

of
833 2

of
6:1: 3

The gradient of a vector-input function is a vector such that each element is the partial derivative of the function
with respect to the corresponding element of the input vector. We’ll use the same notation as derivatives for

gradients.
ml
T —~
Oxl
L3

df
dx

of
oz 1

of
833 2

of
6:1: 3

The gradient of a vector-input function is a vector such that each e
with respect to the corresponding element of the input vector. We’l

gradients.

df
dx

df

of
833 1

of
8:2 2

of
ox 3

lement is the partial derivative of the function

' use the same notation as derivatives for

d—x—Vf(x) _':fo(x’}’)a —yzvyf(x,y)

. dx

d: w* = argmin f(w)
Find: .

(i))
t) W
witt wl) — v #(

] T :

in 1,...,

For 7 in 1,

SN

/0

Loss(w) \
/1'0

/

Q4

1.5 :

\ /\?\/A

d: w* = argmin f(w)
Find: .

(i))
t) W
witt wl) — v #(

] T :

in 1,...,

For 7 in 1,

SN

/0

Loss(w) \
/1'0

/

Q4

1.5 :

\ /\?\/A

Recall that it’s minimum value w*, a function f musthave a gradient of O.

It follows that:

While Vf(w') £ 0

witl o w® _ Vf(w(i))

Loss(w)

2

Recall that it’s minimum value w*, a function f musthave a gradient of O.

It follows that:

While ||V f(w)||y > €

Ix[2

Loss(w)

A

Dataset Abstraction

Set of known inputs and outputs

D = { X1,Y1), \X2,Y2), .-+ \ XN, YN

Patient 1 Patient 2

— Age: 9.61 3 & Age: 5.11 Age: 10.75
Pain: no Y Pain: no Y Pain: no N
RBC: 5.18 b eS RBC: 4.55 ° eS RBC: 4.79 2 O

Peritonitis: no

. Peritonitis: local

Peritonitis: local JE—

p— — — —
p— —
Patients with abdominal pain Diagnosis T
Age Appendix Size Migratory Pain RBC Count RBC Urine Peritonitis Diognosle Xl xll x12 e o o w]_n yl
0 961 9.0 no 5.18 high local O] sppendicitis
1 51 7.0 no 455 medium local 1] no appendicitis
2 1075 5.0 no 4.79 none no 2 no appendicitis T
3| 10.51 9.0 no 503 none local 3| no appendicitis w m x
4| 73 62 yes 464 low no il appendicitis x 2 1 22 ¢ 2n y2
5 1521 85 yes 462 low no 5§ no appendicitis 2
6 1583 120 yes 433 high no 8] no appendicitis !(J— p— p—
Input table [- o = Qutput table [roe)

p 8 1037 55 no 48 none no B "o sppendicis L .) ®] °
9 16.66 9.0 yes 531 none no 9 appendicitis o .
10 14.52 45 yes 4.9 none no 10 appendicitis L] L] L] °
1 10.74 9.0 no 566 none local 11 no appendicitis o ° ° L4 ° .
12 1241 3.7 no 549 none no 12 no appendicitis
13 667 35 no 527 none no 13 no appendicitis
14 14.36 9.0 yes 484 low local 14 appendicitis T
16 9.04 53 yes 492 low no 15 no appendicitis x x p 7— x x yN
16 12.43 12.0 yes 462 none generalized 16 appendicitis — N- — 1 42 U 2 ¢ o0 -2 U n_ o -

Linear (affine) prediction function

Input: x — Output:y, y= f(x)
predict

1=1

We typically refer to w specifically as the weight vector (or weights) and b as the bias. To summarize:

Affine function: f(x) = x'w + b, Parameters: (Weights: w, Bias: b)

D ={(x1,41), (x2,92), --- (XN, YN)}

Linear (affine) prediction function

Input: x — Output:y, y= f(x)
predict

1=1

We typically refer to w specifically as the weight vector (or weights) and b as the bias. To summarize:

Affine function: f(x) = x'w + b, Parameters: (Weights: w, Bias: b)

Augmenting inputs trick
D = {(x1,91), (x2,%2), --- (XN, YN)}

L1 - A w1
L1 w1
o w2
i) w9
X=| | — Xqug= | : and w = | Wawg =
Ln Wn
o 1 - b

We can easily see then that using this notation:

fx)=x'w+b= xfugwaug

Linear (affine) prediction function How to choose a function?

Input: x — Output:y, y= f(x)
predict

f(x) = zn::vzwz + b \

9
We typically refer to w specifically as the weight vector (or weights) and b as the bias. To summarize: \
°

Affine function: f(x) = x'w + b, Parameters: (Weights: w, Bias: b) o

f(zx) =wx +b

Residuals measure error MSE loss minimizes squared residuals

f(x) =wx+b
| N
B L T \2
Loss(w) = MSE(w,X,y) = N ;_1 (x; W — y;)

Loss is a function of parameters

Loss(w)

f(x) =wx +b

. s * . 1O
Find parameters that minimize loss: w" = argmin Loss(w) = argmin— > (xiw—y,)’

w w i=1

Gradient descent: start with random guess, then update in direction

of steepest descent (gradient)

Find: w* = argmin f(w)

Foriinl,..T: wi « wl) Vf(w(i))

Gradient: vector of partial derivatives
-
0x1
df | #5
= | o | = Vf(x)

Oz

Loss(w)

1.0

Calculus with vectors is similar to
calculus with scalars!

d (1 ~r ,
N
ZNZXW Yi)X;

Can verify rules by taking individual
partial derivatives

8 T
a—mlx X =
1 () 82131

0 >

—1x] = 22,
8331

0
Bz, - zi + T3 + T3)

1=

Loss(w)

Problems with gradient descent

Recall that it’s minimum value w*, a function f musthave a gradient of O.

It follows that:

While ||V f(w)||y > €

Ix[2

Loss(w)

A

How big a step to take?

Loss(w)

Gradient/derivative gives a linear approximation of function

a4 = lim max flw +e) — f(w)

dw 720 |ella<y |€]|2

Loss(w)

Gradients too big/too small

1.0

‘ Loss(w)
N
3@
Q
9 e

i

2

NS

Step size!

wit) wl) — aV f(wd)

Loss(w) Loss(w)
\/02 p//%
QO

Back to MSE

d (1 SN, 1
V«MSE(w,X,y) = —) (x/w—y;

N “4

dw

5 XN
N Z(XZTW — Yi)X;
i=1

With this gradient our gradient descent update becomes:

wlitl) Wl ()

X

zmz

W

Caveat

d [1 &
VWMSE(Wa X7 Y) — T (F Z(szW _ yl)z)

dw

N
— i § :(XTW —)X,
— i R
N 1
We know that at the minimum, the gradient must be 0, so the following condition must hold:

2\ e, 7
0=|—+ W — Yi)X;
(N) iZI(XzW y)x

>(§3yx) - w' = (XTX) " (yX)

Predictions are inexact

Weight

®
Input: x; = Horsepower , Output: y; = MPG

Displacement
. 0-60mph _

Predicted MPG = f(x) =

(weight)w; + (horsepower)ws + (displacement)ws + (0-60mph)w,

p(v) = ——exp(— 55— p)’

oV2r

Normal distribution

04

0.3

B 34.1% | 34.1%

0.2

0.1

0.0

Normal distribution

p(y) = — exp(1 (y—u)z)

o\ 2T 202

Linear regression predicts mean!

Y; ~~ N(X;-FW, 02)

Normal distribution

p(y) = — exp(1 (y—u)z)

o\ 2T 202

Linear regression predicts mean!
T 2

Conditional probability of observation

1 1
p(yi | Xi, W) = €XPp 5 (yi — X;'FW)2
oV 2T 20

Model labels

Y; ~~ N(X;-FW, 02)

1 1
p(yi | xi, W) = exp(5 (yi — X?W)z)

oV 27 20

Model residuals
T 9
ez-fv./\/(xz-w—yi, o)

1 1 T \9
p(ei | Xz’aW) — exp(‘ (yi — X W))
o\ 27 202

“Normal” linear regression model

Y; ~~ N(X;-FW, 0‘2)

1 1 . 2)
ply; | X;, W) = eXp Yi — X; W
i 1x0w) = — e = 55— xTw RN
Loss function? \\\\\ﬁ>\

f(zr) =wx +b

“Normal” linear regression model

Y; N(X;-FW, 0‘2)

flx) =wx+b
(v | %5, W) = — ex(1(-—xTw)2) .
py’l, 1) 0-\/% p 20_2 yz 7 \ ’
Loss function? \\\\\ﬁ>\
Goal: Maximize probability
W= arginax p(y | X7W) — argmaxp(yla ey YN I X1y 7XN7W)

W W

k

w* = argmax p(y | X, w) = argmax p(y1,...,Yn | X1,---, XN, W

W W
1 1 T 92 .
(yz ‘ Xzaw) — exp((yz — X W))
oV 27 20°
N o
p(ylwuayN‘xlw”axNa prz‘xz,

1=1

N N
a,rgmapr(yi | X;, W) = argmin — Z log p(y; | x;, w) = NLL(w, X, y)
o=l v i=1

1 (1 (
€XPp Yi
LoV 2T 202

dw \ 202 i

d (1 & —
VwNLL(w,X,y) = — (z:(yZ —x!w)? + Nlog 0\/277)
i=1

argmin M SE(w,X,y) = argmin NLL(w, X, y)

