Binary Classification
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y = f(x), Input:x € R® — Output: y € {0,1}
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The Bernoulli distribution

Probability of heads: q, Probability of tails: 1 — q
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Maximum likelihood for logistic regression
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w* = argmax p(y | X, w) = argmax p(ys, .-,y | X1, -, Xn, W)



Maximum likelihood for logistic regression

w* = argmax p(y | X, w) = argmax p(y1,...,Yn | X1,..., XN, W) ()

A ) Tl N ey

Loss(w) = NLL(w,X,y) = — EN:logp(yi | %, W)

C Neomt/c (oj 71;;@([[\5“)\
Py =11 xi,w) = ox{w), p(yi = 0] x;,w) =1—o(x/w) = o(-x]W) e mm——— e
sty ) pCr=o) 7("/V>

l | | N ;\‘\7 ; T“:\— : [D /
1= 1

ply=1]|z,w,b) =oc(wz+0b)







B Z’;&Tw>>><\) Yo, A v T
T (- AT % Fj_[é
éw %r(x )= w cad “)

/\/LL“ Z Y, x;,ljr&v)%‘ /> lj(l ~oly, w}}j
-,___Z y U'G(TVDX'FU />%Alo\50‘(7<h/)]
=~ & [l ot (- e D) |

A

/



Maximum likelihood for logistic regression

w* = argmax p(y | X, w) = argmax p(y1,...,Yn | X1,..., XN, W) ()
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Multi-class classification

{Cat, Dog,
il & Mouse,...}

y = f(x), Input:x € R" — Output: y € {1,2,...,C}

L Clagses
Ordering irrelevant!

1: Cat, 2:Dog, 3:Mouse

1: Dog, 2:Mouse, 3:Cat



Multi-class prediction functions

Binary thresholding
f(x) = I(x"w > 0)

Multi-class thresholding

f(x) = argmax x"w,
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Multi-class prediction functions
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Categorical distribution
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A probabilistic model for multi-class classification

y; ~ Categorical(q =?), q= x;TFWT?

C
x"WT eRY, g #0Vee{l..C}, > g #1
c=1




Categorical distribution
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Softmax function
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Softmax function
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A probabilistic model for multi-class classification: Multinomial Logistic regression

y; ~ Categorical (softmax(xTW))
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Maximum likelihood estimation for Multinomial Logistic regression

Model Loss
y; ~ Categorical (softmax(xTW)) Loss(W) = NLL(W,X,y) = — ilog p(y; | xi, W)
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Maximum likelihood estimation for Multinomial Logistic regression

Model Loss
T N
yi ~ Categorical (softmax(x” W)) Loss(W) = NLL(W,X,y) = — ) _logp(y; | xi, W)
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Models so far

We saw that a reasonable model for continuousutputs (y € R) is linear regression.

J
yo xT (prediction function)

1
p(y | x,w,0%) =N (y| xTw,o?) (probabilistic view)

Predict y € as

A reasonable model for binary outputs (y € {0, 1}) is logistic regression:

y = I(xTw > 0) (prediction function)
Predict y € as {b—~—-—"
ply=1|x,w) =co(xTw) (probabilistic view)
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A reasonable model for categorical outputs (y € {0, 1,...,C}) is multinomial logistic regression:
W_N

'] (prediction function)
T

softmax(x”W),. (probabilistic view)

C

y = argmax X! w, Y
Predict y € as L

p(y=0,|x,W)=.



