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The Bernoulli distribution
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Maximum likelihood for logistic regression



Maximum likelihood for logistic regression
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Deriving the gradient
parameters
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Maximum likelihood for logistic regression
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Multi-class classification

Ordering irrelevant! 
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Binary thresholding Multi-class thresholding

Multi-class prediction functions
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Multi-class thresholding

Multi-class prediction functions
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Categorical distribution
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A probabilistic model for multi-class classification
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Categorical distribution
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Softmax function
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Softmax function



A probabilistic model for multi-class classification: Multinomial Logistic regression



Maximum likelihood estimation for Multinomial Logistic regression

Model Loss
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Maximum likelihood estimation for Multinomial Logistic regression
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Models so far

w TE
me in


