Binary Classification

4 )—{Cat, Dog}
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y = f(x), Input:x € R® — Output: y € {0,1}
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The Bernoulli distribution

Probability of heads: q, Probability of tails: 1 — q
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p(y) 5 qylm

logp(y) = ylogq+ (1 — y) log(1 — q)
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Maximum likelihood for logistic regression

ply=1|z,w,b) =oc(wx + b)

w* = argmax p(y | X, w) = argmax p(ys, -,y | X1, -, Xn, W)



Maximum likelihood for logistic regression

w* = argmax p(y | X, w) = argmax p(y1,...,Yn | X1,..., XN, W) ()
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Loss(w) = NLL(w,X,y) = — zNzlogp(yi | X, W)
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Maximum likelihood for logistic regression

w* = argmax p(y | X, w) = argmax p(y1,...,Yn | X1,..., XN, W) ()
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Multi-class classification

{Cat Dog,
Mouse, o}

y = f(x), Input:x € R"™ — Output:y € {1,2,...,C}

Ordering irrelevant!

1: Cat, 2:Dog, 3:Mouse

1: Dog, 2:Mouse, 3:Cat



Multi-class prediction functions

Binary thresholding Multi-class thresholding

Ff(x) = I(xTw > 0) f(x) = argmax x we
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Multi-class prediction functions

Multi-class thresholding
f(x) = argmax x” w,
ce{l...C}

For convenience, we can also define a matrix that contains all C parameter vectors:

—W’{- —W11 W12 . e Wld-
W — wy | |[Wa Wa ... Wiy
_Wg_ -WCl Wcz . e WC’d-

With this notation, our prediction function becomes:

f(x) = argmax (x”W7),, W ¢ R“*
ce{1...C}



Categorical distribution
ply=c)=g¢q.,, ye{l..C}

C
qcR® ¢ >0Vce{l...C} chzl
c=1



A probabilistic model for multi-class classification

y; ~ Categorical(q =?), q= x;TFWT?
C

x'WT eRY, ¢, #0Vce{l..C}, ch £ 1
c=1

C
Need f(x): R — [0,00)%, ) f(x). =1
1=1



Categorical distribution
ply=c)=g¢q.,, ye{l..C}
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p(y) = [[ ¢ =g,

logp(y) =
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Softmax function

e’
softmax(x). = —
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argmax X, = argmax softmax(x),
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A probabilistic model for multi-class classification: Multinomial Logistic regression

y; ~ Categorical (softmax(xTW))

Zf:1 ex ™

p(yi =C | X, W) = softma,x(xTW)c =




Maximum likelihood estimation for Multinomial Logistic regression

Model Loss
T N
y; ~ Categorical (softmax(x” W)) Loss(W) = NLL(W,X,y) = — ) _logp(y; | xi, W)
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Maximum likelihood estimation for Multinomial Logistic regression

Model Loss
T N
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Models so far

We saw that a reasonable model for continuous outputs (y € R) is linear regression.

y=xTw (prediction function)
Predict y € as

p(y | x,w,0%) =N (y| xTw,o?) (probabilistic view)
A reasonable model for binary outputs (y € {0,1}) is logistic regression:

y =I(xTw > 0) (prediction function)
Predict y € as {b—~—-—""

ply=1]|x,w) =oc(xTw) (probabilistic view)
N\~
A reasonable model for categorical outputs (y € {0,1,...,C}) is multinomial logistic regression:
r———

y = argmax x.'w, [DJ (prediction function)
T

C

ply=c|x,w) ;Wc (probabilistic view)
g g

Predict y € as



