Feature transforms



Story so far

y=x'w (prediction function)
Predict y € as

p(y | x,w,0%) =N (y | x"w,0?) (probabilistic view)
A reasonable model for binary outputs (y € {0, 1}) is logistic regression:

y = I(xTw > 0) (prediction function)
Predict y € as

ply=1]|x,w)=o(xTw) (probabilistic view)
A reasonable model for categorical outputs (y € {0,1,...,C}) is multinomial logistic regression:
y = argmax X w, (prediction function)

Cc

Predict y € as

p(y = c | x,w) = softmax(x! W), (probabilistic view)
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(Approx.) Linear data
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Non-Linear data
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Polynomial functions

Quadratic function Cubic function

3 2
f(z) = wez® + wyz + b f(z) = w3z” + wyz” + wiz +b

Degree (highest power): 2 Degree (highest power): 3



Polynomial functions of multiple inputs

f(z,y) = wsz? + way® + wazy + wox + wiy + b

f(x) = w5:1::22 + w4x-13 + w3x1Ty + wery + w1k + b



Linear function of 2-inputs (plane) Quadratic function of 2-inputs (paraboloid)

f(x) = wsx3 + wyx} + wyz 1Ty + WaTy + Wi1T1 + b




Degree of a polynomial function

Largest (total) exponent in any term
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Polynomial functions as vector operations

f(x) = wsz2 + wyx? + wyx T2 + Woy + wiTy + b
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Polynomial functions as vector operations
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Polynomial functions as vector operations
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Quadratic function as a feature transform
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d(x)Tw = woz? + wizy +b, ¢(x) = 2




Fitting quadratic regression y
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Prediction function Negative log-likelihood loss

9 Loss(w) = NLL(w, X, y) Zlogp Yi | xi, W

(vi — ¢(Xz‘)TW)2 + NlogoV2m
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Probabilistic model Optimization problem

yi ~ N (p(x ) w ,0%) w* = argminNLL(w, X y)



Fitting quadratic regression

Prediction function

Probabilistic model

NN(¢( i) WO'2)

Negative log-likelihood loss

Loss(w) = NLL(w,X,y) = Zlogp Yi | xi, W
N ) o
= — Z (yi — gb(xi)TW) + Nlogov2n

i=1

What is the gradient of the log-likelihood
with respect to w?



Fitting quadratic regression

Prediction function

Probabilistic model

NN(¢( i) w02)

Negative log-likelihood loss

Loss(w) = NLL(w,X,y) = Zlogp Yi | xi, W

N
- Z (yz — ¢(xi)Tw)2 + Nlogov2n

1=1

What is the gradient of the log-likelihood
with respect to w?

N
VWNLL(w, X, ) = - 3 (6(x:)"w — 4:) $(x)



Quadratic regression on real data
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Quadratic logistic regression

Prediction function Negative log-likelihood loss

o NLL(w, X, y) = Zloga (2y: — 1)g(x:)" w)
£ = 1) Tw = 0), 4(x) = | 7157

m% With two inputs

1 \

Probabilistic model

Yi ~ Bernoulli(a(gb(xi)Tw)), plyi =1|x5,w) = U(¢(xi)TW)



Quadratic decision boundaries

f(x) =1I(¢(x)"w > 0),

Linear decision boundary
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Cubic feature transforms

f(x) = ¢(X)TW = ng:f + wzzc% +wiz1 +b, ¢(x)=
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Other feature transforms
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Other feature transforms
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Other feature transforms
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DATA

Which dataset do
you want to use?
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REGENERATE

Back to our viz

FEATURES

Which properties do
you want to feed in?
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Test loss 1.047
Training loss 1.110
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How do we choose a transform?

Data =X,y

Split
Training data = X,m,-n, Yiuin / \ Testdata = Xtest, Yiest
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Fit model Evaluate model
W < argmin LOSS(W’ Xtrain’ ytrain) LOSS(W’ Xtest’ y test)
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