Which function best fits this data? Why?

What are some of the choices that we can make when designing a neural
network?

What might we infer about the differences in the neural networks used for each
function?

What can we conclude about the neural network weights in the third figure from
looking at the highlighted region?

Evaluation

00000

O

O
O
O

O

Input Layer € R® Hidden Layer € R* Hidden Layer € R* Hidden Layer € R* Hidden Layer € R* Output Layer € R!

000 Q000D

Input Layer € R® Hidden Layer € R® Hidden Layer € R8 Hidden Layer € R® Hidden Layer € R* Output Layer € |

Input Layer € R® Hidden Layer € R2 Output Layer € R!

8 (8)

O
O=

Input Layer € R®

Hidden Layer € R8

Hidden Layer € R8

Hidden Layer € R8

Hidden Layer € R*

Output Layer € R!

L oss

Gradient descent steps

-
- m Ll o 1
[- - . S

Loss(w) = NLL(w, X, y) Zlogp yi | X;, W)

4 (4) 1(1) 0 (0)

?

Gradient descent steps
. oI correct predictions _ T <.) = 1.
2 (2) 7(7) 1(1) AccuraCY° Total predictions N Zz; (f(Z) yZ)

Are we done?

7(7)

Input Layer € R® Hidden Layer € R® Hidden Layer € R8 Hidden Layer € R® Hidden Layer € R* Output Layer € R!

How many functions have 0 loss?

1 N
MSE Loss = > lzzl (f(x) — y,)°

What if we then see new data®?

1 N
MSE Loss = > lzzl (fx) — y,)°

Data =X,y

Split
Training data = Xtm,-n, Yiuin / \ Testdata = Xtest, Yiest

Fit model Evaluate model
w < argmin Loss(w, X,,,..> Yirain) Loss(W, X,.» Yzesr)

w

Train-test split

Take best model

Repeat until desired
performance is
reached

Data =X,y

/Pl\

Training data = xtrain’ ytrain Validation data= xvalid’ yVahd Testdata = Xtesp ytest

~ '

Fit model(s)
w <« argmin Loss(w, X

train® y train)

w Loss(W, X5 Yrest)

~ ~

Evaluate model

Make modeling choices

Choose model such that Loss(w.X, ;4. Y,ai) is minimized!

&

7 Learningrate |
Numberof ‘ Activation - » andgradient . |
layers and ; : function descent steps . |
neurons) -)

Repeat until desired
performance is
reached

.
.o
-~

Repeat for ':
each fold v

| Take best model

Data =X,y

llllllllllllllll,/?m

Training data = X

-) —_— —

Fold 1

rod2 [HHNENEENSENENEN
Fods T T NNEREEN
Fod4 [HNNHEEEEEEEEN
For each fold:

Fit model(s)

w <« argmin Loss(W, X,, ;i Yirain)

w

Evaluate model

Loss(w, X, iz Yyaiia)

rrains Yirain Validation data = X, s Yyatia

Testdata = X, ¥yeur

(. 7/
~\ 7~

Evaluate model
LOSS(W, Xtest’ y test)

-4 4

6 6
o
o 4 41
le}
[J 4
o] 2
° o 2
L J o o0

L 04

o 3 0

.o o .0

® o ° -2

L] L4 ° -2 4

L] L4 o
* L
o =41
o
o]
o %
o -6
T T T T T T T T T T T
-3 -2 -1 1 2 -3 -2 0 1 2 3

Underfitti

ng

Well-fit

Validation loss

Loss

Training loss
>

N\ 7~ N\ 7~ N\ 7~

Underfitting Well fitting Overfitting

Model complexity

Loss vs. training iteration

0.70

0.65 A

0.60 1

0.55 A

0.50

0.45

0.40 A

= Training loss
—— Test loss

20

40

60

80

100

120 140

Loss

Validation loss

Training loss

>

7\ '\ J

- - \ 7~

Underfitting Well fitting Overfitting
Model complexity

Early stopping point

Validation loss

Loss

Training loss

Gradient descent iteration

Early stopping point

Validation loss

for i in range(steps):
loss = compute_loss(model, training_data)
loss.backward()
LOSS optimizer.step()
optimizer.zero_grad()
valid_loss = compute_loss(model, training_data)
if valid_loss > valid_losses[-1]:
break

valid_losses.append(valid_loss)

Training loss

Gradient descent iteration

Loss vs. training iteration

1.0 A

0.8 A

0.6 -

0.4

0.2 A

- Training loss
—— Test loss

80

100

120

140

Loss vs. training iteration

— patience = 5 # Number of steps to wait before stopping
1Ta'n"1g|oss steps_since_improvement = 0@ # Steps since validation loss improved
—— Test loss min_loss = 1e8 # Minimum loss seen so far (start large)

for i in range(steps):

valid_loss = compute_loss(model, training_data)

If the validation loss improves reset the counter
if valid_loss < min_loss:

steps_since_improvement = 0

min_loss = valid_loss

Otherwise increment the counter
else:
steps_since_improvement += 1

If its been patience steps since the last improvement, stop
if steps_since_improvement == patience:
break

0 20 40 60 80 100 120 140

w 4

N
N
|
N
—’3 —l2 -‘1 (I) 1 2 3 —‘3 -I2 —Il I0 1 2 3I
Well-fit Overfit
7 4 ey g
/
\ <[} tt 0
" i~ ! =g
= =9
,, 0 oY n
-} =
= | — |
o B = ‘
Iz} B [Showtestdata [Discretize output

[Showtestdata [] Discretize output

An overfit network will have large weights to Aregularized network will have smaller weights
encode large slopes. encoding a smooth function.

Loss(X,y,w) = MSE(X,y,w) + ALsy(w)

f(x,wo,...) = o(o(c(c(xTW)TW3)TW3)TW) T'wy

00000
Q0000000

A9 Q000D
SELei e D one
ONONONO.

Input Layer € R® Hidden Layer € R® Hidden Layer € R® Hidden Layer € R® Hidden Layer € R* Output Layer € R!

Ly(wo, W1,..., W) =) [[W3
=0

In practice most networks also incorporate bias terms, so each linear function in our network can be written as:
x?W + b
And the full prediction function for a sigmoid-activation network might be:

f(x,wq,...) =c(c(c(c(xTW4 +by)TW3 + b3) W, 4+ by) "W, + b)) wj + by

Well-fit Overfit

Does the bias contribute to overfitting?

o %
. ~

Underfitting

Loss

o %
. -

Well-fit

Training loss
>

NS N N

Underfitting Well fitting Overfitting

Model complexity

Overfit

Validation loss

Sampling data

5 -4 -3 -2 -1

6

5 -4 -3 2 -

-6

Underfitting

X E k--- ——._/k------------------
[e
«~

< © ¢
X2 \/ This is the output O~
from one neuron. °
Hover to see it
larger.

sin(X) ~A-

Overfitting

D Discretize output

|
1

Colors shows
data, neuron and
weight values.

[J Show test data

\f-\.../\h}
~—rb

'hrl’]-,

ey
\\

nlnlulinin

B
= llIII’LITL. —
== Irrq~f
@ -~ o\mc“ RN fll/
\ J LY _ T _ _ al
/ﬂ”ﬂlll/l! e | . / 7
e S L e -
—— -— "',' — = Y
1 - W \ ’n."" 'Fllll‘l&m &
& ’ 7 _ - _
! ;0.14‘\ :9/ = leIl\\\
T I’JL - = ¢?M«l':|.hx¥
‘“ﬂuﬂr“.i Lpek =y . -
_"\\\“D\ . =
NS : A-ll-vt\ﬂ‘\\ // i
— — - o
— =3 N

e e T C,Mr.lu»l Ve T !
\\\!:\ \\‘IA \\v/u' —
I _ . _ _ _ - _ _
— \\ \\\\ |
—— \\ L\““‘
1 \\\..V\P i
1= Y,

Overfitting

Good fit

Sin(X) ~~ 3 ————-————---<_______.3

The outputs are

This is the output mixed with varying
from one neuron. weights, shown by
Hover to see it the thickness of
larger. the lines.

S I

=5

6

Overfitting

Better fit

Model complexity curve

Underfitting

Loss

Well-fit

Training loss
>

N\ 7~ N\ 7~ N\ 7~

Underfitting Well fitting Overfitting

Model complexity

Overfit

Validation loss

Underfitting Overfitting Good fit

Training loss:

Test loss:

Overfitting with high weights

Overfitting with high weights

]

Click anywhere to edit.
Weight is 0.13.

IIREIRNI NSRRI RN RN

= o

Click anywhere to edit.
S

Weight is -5.2. L
\ v

|
/
/I

i

Colors shows
| —

ERURE

data, neuron and
weight values.

\
\!

)
R
=

B -

\“ s
(Y

\} ‘

\ “

\

\
Colors shows
data, neuron and !
0 1
"
[Show testdata [] Discretize output
7

[IR AR AR R RS R Y

weight values.

[Show testdata [] Discretize output

L2 Regularization

L2-Loss

2_ .92 2
f—m+%

e

d
Ly(W) = W3 =)
i=1 j=1

w

2

)

L2 Regularization

d e
2 (W) = W[5 =D w
i=1 j=1

L

w)

S(X’ y, W) = MSE(Xa y, W) + A:[‘2(

Los

L2 Regularization

d e

Ly(W) = W3 =) > w}

1

i=1 j

w)

MSE(X,y,w) + AL3(

L1 Regularization

d d e
Vector: Lay(w) = ||w||5 = Z'wf Matrix: Ly(W) = [|[W]|2 = Zwaj

i=1 i=1 j=1

d d e
Vector: Ly(w) = [|w|y =) |w;|, Matrix: Ly(W) = W]y =)) " |w;|
] 1

i=1 i=1 j=

7}
N

]

Click anywhere to edit.

Weight is 0.13.

(KSR RIREI RN RIS R Y

HRRIRRIR ST IR

L1 Regularization

Colors shows
data, neuron and | !

1 0 1
weight values

[Showtestdata [Discretize output

]

Click anywhere to edit.

Weight is 0.0.

Uooook

NIRRIRRIRRIRESRRIRRIRE

Colors shows
data, neuron and
weight values.

O Show test data

1

[Discretize output

L1 Vs. L2 Regularization

d
Vector: Lay(w) = ||w||3 = szz
’ / 1=1

d
Vector: Ly (w) = [|w]|; = Z lw;|,
=1

L1 Vs. L2 Regularization

Dropout

/A

'1?‘\#‘

W\
AV

S
XK
%
(N S 7\ ‘ /\ 7\
R TR T
YA b’(a‘\ﬂv

N

After applying dropout.

(b)

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:

(a) Standard Neural Net

An example of a thinned net produced by applying dropout to the network on the left.

Crossed units have been dropped.

Dropout(X,7r) =D o X, D=

Dropout

di2 din
dao dan,
dm2 dmn_

, dij ~ Bernoulli(1 —r)

¢(x) = (DO, (x)" W + b)

Dropout(X,7r) =D o X, D=

Dropout

, dij ~ Bernoulli(1 —7)

~
)

0

n

NN

sin(X)

<
3

Nels
NIRRT REAN
nininininis

Dropout

B(X) train = (DO, (x)TW + b)

- ¢(X)evat = o(xTW + b)

<
4

Nels
nninluleln
nininininis

Dropout

O(X) train = a(DOr(x)TW +b) = d(X)evat = a(xTW +b)

E[DO,(x)Tw] = Z d;z;w;, d; ~ Bernoulli(1—r)

— Zp(di = 1)miwz~ = (1 — r) szfwz < szwz

Dropout

2 Hidden-layer network with dropout
model = nn.Sequential(nn.Dropout(@0.5), nn.Linear(2, 10), nn.ReLU(),
nn.Dropout(0.5), nn.Linear(10, 10), nn.ReLU(),
nn.Dropout(0.5), nn.Linear(10, 1)
)

