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Review of expectation and variance



Expectation

E|X] = / zp(x)dz (Continuous random variables)




Expectation

E[X]| = Z zp(x) (Discrete random variables)
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Linearity of expectation




Variance

Var[X] = E[(X — E[X])’]




Properties of variance
Var[X] = E[X?] — E[X]?
Var[aX] = a*Var[X]
If X and Y are independent:

Var|( X + Y] = Var X| + Var[Y]



Dropout
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An example of a thinned net produced by applying dropout to the network on the left.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
Crossed units have been dropped.



Dropout

Dropout rate: r

(dy dis
do1  da2

DO(X,r)=DoX, D=
-dml dm2

d;; ~ Bernoulli(1 — r)




Dropout
Within a NN layer:

¢(x) = o(DO,(x)" W + b)



Dropout

A network with several dropout layers:

f(x,wg,...) =DO,(c(DO,(¢(DO,(c(DO,(x)TW; + by))TW; + b1)) wy + b



Dropout

A network with several dropout layers:
a = (DO, (x)TW; + by)

b = a(DOr(a)Twl + bl)

f = DO, (b) wy + by
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Dropout at evaluation time
G(X) train = J(DOT(X)TW +b)
= O(X)evat = o(xIW +b)

This has a problem!



Dropout at evaluation time

Consider the expected value of a linear function with dropout:

E[DO,(x)'w] = Z d;zjw;, d; ~ Bernoulli(l —7)



Dropout at evaluation time

Consider the expected value of a linear function with dropout:

E[DO,(x) Z diz;w;, d; ~ Bernoulli(1 — )

—Zp Dzw; = l—r)Zmiwi<Zwiwi
5 i

If » = 0.5 then on average the output of our function with dropout will only be half as large as the function without
dropout!



Dropout at evaluation time

Correct solution



Dropout at evaluation time

Simple (but not quite correct) solution
Dropout,,;(X,r) = (1 — r)X
This gives use the smooth prediction function we’re looking for:
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Dropout in PyTorch

1 # 2 Hidden-layer network with dropout

2 model = nn.Sequential(nn.Dropout(0.5), nn.Linear(2, 10), nn.ReLU(),
3 nn.Dropout(0.5), nn.Linear(10, 10), nn.ReLU(),
nn.Dropout(0.5), nn.Linear(10, 1)

4
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Optimization



Initialization

Gradient descent:

k+1)

w — w® —aV,Loss(w® X, y)

What do we choose for w(0)?



Convexity

Convex function f

tf (z1) + (1 =) f (72)

f ity + (1 —t)xa)

T

tl‘l + (1 - t):l]'g

T2



Convexity

Strictly convex function f

tf (x1) + (1 =) f (22)

f (t.’L‘l + (1 — t)fL‘g)

fltor + (1 = t)z2) <tf(w1) + (1 — 1) f(z2)

=

X1

Single optimum, gradient is non-zero away from the optimum.

tZIfl + (1 - t).’L’Q

Z2



Convexity

Linear and logistic regression losses are convex (usually strictly)

Loss(w)
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Convexity

Linear and logistic regression losses are convex (usually strictly)

Loss(w)
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Gradient descent will always* get us to the right answer.



Convexity

Neural network losses are (usually) not convex!
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Convexity
Two equivalent solutions

FEATURES + — 1 HIDDEN LAYER OUTPUT

Which properties do Test loss 0.000
you want to feed in? Y= Training loss 0.000

Xtz
xe2
XiX2
sin(x1)
Colors shows
data, neuronand P 1 —
sin(x?) - 1 0 1
weight values.
[ showtestdata [J Discretize output
FEATURES + — 1 HIDDEN LAYER OUTPUT

Which properties do Test loss 0.000
you want to feed in? Y= Training loss 0.000

F}- -

xiz This is the output
Hover to see it
larger.
X2
Xixe
sin(X1)
Colors shows
data, neronand P 1 —
sin(xe) . B 3 1
weight values,

O showtestdata [J Discretize output



Symmetry-breaking

A simple network

f(x) = o(xTW1)Twg = o(z1w)wor + o(z1wiz)wes

d
dwor

d
d’w()2

f(x) =

fx) =



Symmetry-breaking

A simple network

f(X) = O'(XTwl)TWO = 0'(%1’11)11)’(001 + a(x1w12)w02
d

dwor

d
dw02

f(x) = o(z1wi1) = o(z1a)

f(x) = o(z1w12) = o(x10)



Symmetry-breaking

0

When the network is initialized with symmetry, the
two neurons will always have the same output
and our solution is poor.

When initialized randomly, the two neurons can
create different transforms and a much better
solution is found.



Symmetry-breaking
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Visualizing learning rates
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A small learning rate means we A well-chosen learning rate lets A too-large learning rate means
will move slowly, so It may take a us find a minimum quickly. that steps may take us flying past

long time to find the minimum. the minimum!



Scaled initialization

Initializing randomly:
w; ~N(0,1) Vw;, ew

This has a subtle issue though. Why?



Scaled initialization

To see why let’s consider a linear function defined by randomly initialized weights:

d
i=1

Let’s consider the mean and variance of this output with respect to w:



Scaled initialization

To see why let’s consider a linear function defined by randomly initialized weights:

d
i=1

Let’s consider the mean and variance of this output with respect to w:



Scaled initialization

To see why let’s consider a linear function defined by randomly initialized weights:

d
i=1

Let’s consider the mean and variance of this output with respect to w:

Var[f(x)] = Var { Zdlj xw]



Scaled initialization
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Scaled initialization
Scaling

f(x) = ;d;fﬂzwz (%)

If we want the variance to be independent of d, then we want:

S =



Scaled initialization
Scaling

d
1
f(x) = ww; (—)
i—1 5
If we want the variance to be independent of d, then we want:

s=Vd



Scaled initialization

Computing the variance

()



Scaled initialization

Computing the variance



Scaled initialization

For neural network layers where the weights are a matrix W € R%*€, this works the same way:

1
Wij ~ N(O, ﬁ) Vwm < W, W C Rdxe

A popular alternative scales the distribution according to both the number of inputs and outputs of the layer:

2
d-+e

Wij NN(O, ) Vwij ceW, we RAxe

This is known as Xavier initialization (or Glorot initialization after the inventor Xavier Glorot).



Scaled initialization

Kaiming normal
w; ~ N(O,

Standard normal
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Stochastic Gradient Descent



Computational complexity

We can consider one of the networks shown above as a specific

e Dataset size: IV

e Dimensionality: d
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e Number of steps: S

utput

[ Showtestdata  [] Discretize o




Computational complexity

Loss function

N
Loss(w, X,y) = v >_(f(xi;w) ~ )’

Gradient with respect to the parameters, w.

Our analysis would be equivalent for classification problems.



Computing a single neuron
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Computing a single neuron

$(x) = o(x"w) = o X, ziw,

Backward pass?

e Given: dfl‘f;s

dLoss dLoss

e Update:
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Computing a single neuron

Backward pass?

dLoss

e Given: W

dLoss dLoss

e Update: ==

Activation function:

All scalars! O(1)

dLoss  dLoss d¢

d(xTw)  d¢ d(xTw)
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Computing a single neuron

Backward pass?

e Given: 7;&3;5)
e Update: dgz‘?s dg,;’fs
dLos —

dwi
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Computing a single neuron

Backward pass?

dLoss
d(xTw)

dLoss dLoss
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e Update:

N\w
77 WA PSS

NN

dLoss dLoss d(xTw) _ dLoss .

dz; d(xTw) dz; d(xTw)

dLoss dLoss d(xTw) dLoss
dw; d(xTw) dw; d(xTw)

O(1) per entry. Total: O(d).



Cost per layer

O(d) Neurons per layer
Total cost: O(d?)

Full network: O(Ld?)



Computational complexity

We’ve bounded the time it takes to compute one of our predictions: f(x;, w).

1 N
L X — . 2
ioss(w, X, y) = — ; f(xi,w) — i)

N terms in summation, total cost of O(IN Ld?) for a single gradient descent update:
wkEtl) (k) _ onWLoss(w(k), X,y)

Total cost of gradient descent: O(SN Ld?).



AlexNet (2012)

)
e Dataset size: N = Network:
e Dimensionality: d =
Image: 224 (height) x 224 (width) x 3 (channels)
- [
[c ion with11x11kernel+4stri 54x9
— ! details f
e Number of layers: L = D
seen these layers
| Convolution with 5x5 kernel+2 pad:26x26x256 yetl
[ J N u m be r Of Ste ps: S pu— | Pool with 3x3max.kerﬁe?f;:(ride 12x12x256

) | Convolution with 3x3 kernel+1 pad:12x12x384

_Relu

[c ion with 3x3 kemel+1 pad:12x12x384
U Relu

| Convolution with 3x3 kernel+1 pad:12x12x256

/Relu
| Pool with 3x3 max.kemel+2stride:5x5x256

et
[ Dense: 4096 fully connected neurons
ReLu, dropout p=0.5 d ~ 4000
[ Dense: 4096 fully connected neurons
L ReLu, dropout p=0.5
[ Dense: 1000 fully connected neurons

Output: 1 of 1000 classes



AlexNet (2012)

Dataset size: N =

Dimensionality : d = 4000

Number of layers: L = 10

Number of steps: S =

14,197,122 images



Estimating loss

Neural network MSE loss:



Estimating loss

Neural network MSE loss:

Estimate by sampling:

L X
o X.)
LOSS(W X7 Y) (f(xia

MSE

w)

1
" N <

1

_yi>27

XZ)

i ~ Uniform(1, N)



Estimating loss

va%%s(w,X,y) ~ (f(x;,w) —¥;)?, i~ Uniform(1,N)

Expectation of sampled loss



Estimating loss

Ifw%%s(w,X,y) ~ (f(x;,w) —¥;)?, i~ Uniform(1,N)

Expectation of sampled loss is the true loss!

N

Bi(F(xi, w) = )] = 3_p(0) (F(xi, W) — 93)”



Estimating loss

In general any loss that can be written as a mean of individual losses can be estimated in this way:

1 XN
Loss(w,X,y) = N Z Loss(w,x;,y;)
i—1

Loss(w, X,y) = E[Loss(w, x;,¥;)], ¢ ~ Uniform(1, N)

Cost for full loss: O(N)
Cost of estimated loss: O(1)



Estimating gradients

Gradient descent update:

k+1)

w — w® —aV,Loss(w® X, y)

Gradient can be composed into a sum of gradients and estimated the same way!

1
VwLoss(w,X|y) = Vy (W ; Loss(w, x;, yz))



Estimating gradients

T
VwLoss(w,X,y) =V (N ; Loss(w, x;, yz)>

N
_ % Y VLoss(w,x;,y;) = E[VyLoss(w, x;,,)))
o
PCY

wtt) « — wlb) _ oV, Loss(w!

Stochastic gradient descent update:

k)7xi7yi)

i ~ Uniform(1, N)

= {F (y}] = é ) 10[%5



Estimating gradients




Minibatch SGD

Can estimate gradients with a minibatch of B observations:

Batch: {(xbﬂ ybl)’ (xb27 yb2)7 ) (bea be)}
{b1,b2,...,bp} ~ Uniform(1, N)

New estimate: o DL 5’26 D'tﬁ bc(h[/l

1 B
VwLoss(w,X,y) ~ 5 Z VwLoss(w, xp,, Yp,)
i=1

{bl, bz, cen ,bB} ~ Uniform(l, N)



Minibatch SGD

Does this still give the correct expectation?

1 B
E {E ; VwLoss(w,xp.,yp,)| =7



Minibatch SGD

Does this still give the correct expectation?

B

F[C'- \ZJ W F [}(] L@;JVWLOSS(M xbi,ybi)]j

B
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Minibatch SGD

What about variance?

1 B
Var [E ; VwLoss(w,xp., yp,) | =7



Minibatch SGD
The variance decreases with the size of the batch!

B

e ool arg ;i) Ve[ BTt xlyi)lg Afor it

Vofer] = UL - )Xi oo
Vil [X+YJZWB( +VVB'J v Loss(w, xbi,ybi)]



Minibatch SGD




Local optima

Can we escape local optima?



Saddle points

What about saddle points? \Kf\




Momentum
Gradient descent with momentum updates the average gradient then uses the running average to take descent

steps.

Update velocity
memeafor dH2S
\_ %
W(k+1) -« W(k) _av(ky‘) L/c. Tco.//\“,s /( e

Update weights using velocity

(et (K] @C -
X e— =t V, Logs . al ot ezt



SGD + Momentum

We can apply momentum for stochastic gradient descent as well

Update velocity
v« gv®) 4 (1 — B)VyLoss(w® x;,y;), i ~ Uniform(1, N)

Update weights using velocity

k) o (k+1)

wk)  wl o'

k
VWLOSS(W(k), X7 Y) ~ Z Bk_j(l o B)VWLOSS(W(j)7 X s yi(j))

J=1



SGD + Momentum

Momentum also smooths our SGD path!



SGD + Momentum



Adaptive gradients (RMSProp)

VwLoss(w® X y) = | -4

[ 4L
d'w1

dwgk)




Adaptive gradients (RMSProp)

Y-axis [

X-axis



Adaptive gradients (RMSProp)



Smtles |/
l;/;e [/



Adaptive gradients (RMSProp)

S
dw,
VwLoss(w® X y) = | -4

dwgk)

10.1 8.6 9.4
0.04] « [0.02| < [0.009]...




Adaptive gradients (RMSProp)




Adaptive gradients (RMSProp)




Adaptive gradients (RMSProp)

h
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Adaptive gradients (RMSProp)
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Second-order optimization

Second derivative tells us how quickly the derivative changes (curvature)

Idea (Newton’s method): Divide our step by the second derivative hf

V Loss( w
Wl () / Lolse / Qf*eﬂ

“ve Loss(w
MJ Wde e/
: 7

vd o/ Uatia Wi | Le



Adaptive gradients (RMSProp)

Update scales _— SQMD'/ i_
s« gs® 4 (1 — B)(VwLoss(w®, X, y))? ?/@“4/\
[—u
Update weights ‘\"D (4 S"). MW?N%J:
VL k) X
wFD Wk _ oss(w y)
S(k+1) + €

® Cliide b osf el 0 f
ﬂ’ /aJc’c/l(r chle,



Adaptive gradients (RMSProp) Reof- A X %MV&A ’l/b/’-

Update scales

glk+t1) . 5S(k) + (1 — 5)(VWLOSS(W(k)a X, Y))2

Update weights
VwL (k) X
wk) Wk YW oss(w'", X, y)
S(k+1) + €
po—
What is epsilon for? = ZO




Adaptive gradients (RMSProp)

What if we just scaled the gradient directly (not using the history?)

VwLoss(w), X y)

g(k+1)

dL

dwq

VG

dL

dwg

()




Adaptive gradients (RMSProp)

What if we just scaled the gradient directly (not using the history?) 1 /\0/6 ‘;C&Q OJV Co'ﬂe/
\

(D) 7 ST
_sign(j—i
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= = sign(d—w2
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Adam

Can we combine adaptive scaling and momentum?



Adam

Update velocity

vED ﬁ1V(k) + (1 — Bl)vaOSS(W(k)’ X,y)

Update scaling

gkt st(k) + (1 - 52)(VWLOSS(W(k)7 X, Y))z

Update weights Ml/( L./‘(‘hx\v‘“ '
0 vE+)

YA — OcC éw\‘f?é'gc»/ €_

w1 Wl



Adam odtions . O (Lafairg )

" conEYof4 0 Ig
Update velocity P‘ s /é,,\ 3
Momehren 2 0 _
k+1 k 5Cc.|l/\
v« giv) (1 - 1) VyLoss(w X, y)
Update scaling

gkt ﬁzs(k) + (1 - /82)(VWLOSS(W(k)7X) Y))2

Modified weight update: c
ight update ,J" (‘ ,,(/A.«(

v (k+1)

)
(159 wele C
S(k+1)

(1-55)

wkD) o wk® _

+ €



Adam

At step O:

(k+1) 0+ (1 - B1)VyLoss(w®, X
A% _ /81 +( /81) OSS(W ’ 7y) b VWLOSS(W(k)7X7 y)

(1-58Y) (1-51)




