
Initialization
Gabriel Hope

Review of expectation and variance

Expectation

E[X] = ∫
x

xp(x)dx (Continuous random variables)

Expectation
E[X] = ∑

x

xp(x) (Discrete random variables)

Linearity of expectation
E[aX] = aE[X]

E[n

∑
i=1

Xi] =
n

∑
i=1

E[Xi]

Variance
V ar[X] = E[(X − E[X])2]

Properties of variance

If and are independent:

V ar[X] = E[X 2] − E[X]2

V ar[aX] = a2V ar[X]

X Y

V ar[X + Y] = V ar[X] + V ar[Y]

Dropout

Dropout
Dropout rate: r

DO(X, r) = D ⊙ X, D =

⎡⎢⎣ d11 d12 … d1n

d21 d22 … d2n

⋮ ⋮ ⋱ ⋮
dm1 dm2 … dmn

⎤⎥⎦dij ∼ Bernoulli(1 − r)

Dropout
Within a NN layer:

ϕ(x) = σ(DOr(x)T W + b)

Dropout
A network with several dropout layers:

f(x, w0, . . .) = DOr(σ(DOr(σ(DOr(σ(DOr(x)T W2 + b2))T W1 + b1))T w0 + b0

Dropout
A network with several dropout layers:

a = σ(DOr(x)T W2 + b2)

b = σ(DOr(a)T W1 + b1)

f = DOr(b)T w0 + b0

Dropout

Dropout

Dropout at evaluation time

This has a problem!

ϕ(x)train = σ(DOr(x)T W + b)

→ ϕ(x)eval = σ(xT W + b)

Dropout at evaluation time
Consider the expected value of a linear function with dropout:

E[DOr(x)T w] = ∑
i

dixiwi, di ∼ Bernoulli(1 − r)

Dropout at evaluation time
Consider the expected value of a linear function with dropout:

If then on average the output of our function with dropout will only be half as large as the function without
dropout!

E[DOr(x)T w] = ∑
i

dixiwi, di ∼ Bernoulli(1 − r)

= ∑
i

p(di = 1)xiwi = (1 − r) ∑
i

xiwi < ∑
i

xiwi

r = 0.5

Dropout at evaluation time
Correct solution

Dropout at evaluation time
Simple (but not quite correct) solution

This gives use the smooth prediction function we’re looking for:

Dropouteval(X, r) = (1 − r)X

Dropout in PyTorch
2 Hidden-layer network with dropout1
model = nn.Sequential(nn.Dropout(0.5), nn.Linear(2, 10), nn.ReLU(), 2
 nn.Dropout(0.5), nn.Linear(10, 10), nn.ReLU(), 3
 nn.Dropout(0.5), nn.Linear(10, 1)4
)5

http://localhost:5038/lecture8-regularization/slides.html?print-pdf=#cb1-1
http://localhost:5038/lecture8-regularization/slides.html?print-pdf=#cb1-1
http://localhost:5038/lecture8-regularization/slides.html?print-pdf=#cb1-1
http://localhost:5038/lecture8-regularization/slides.html?print-pdf=#cb1-2
http://localhost:5038/lecture8-regularization/slides.html?print-pdf=#cb1-2
http://localhost:5038/lecture8-regularization/slides.html?print-pdf=#cb1-2
http://localhost:5038/lecture8-regularization/slides.html?print-pdf=#cb1-3
http://localhost:5038/lecture8-regularization/slides.html?print-pdf=#cb1-3
http://localhost:5038/lecture8-regularization/slides.html?print-pdf=#cb1-3
http://localhost:5038/lecture8-regularization/slides.html?print-pdf=#cb1-4
http://localhost:5038/lecture8-regularization/slides.html?print-pdf=#cb1-4
http://localhost:5038/lecture8-regularization/slides.html?print-pdf=#cb1-4
http://localhost:5038/lecture8-regularization/slides.html?print-pdf=#cb1-5
http://localhost:5038/lecture8-regularization/slides.html?print-pdf=#cb1-5
http://localhost:5038/lecture8-regularization/slides.html?print-pdf=#cb1-5

Optimization

Initialization
Gradient descent:

What do we choose for ?

w(k+1) ⟵ w(k) − α∇wLoss(w(k), X, y)

w(0)

Convexity
Convex function f

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2)

Convexity
Strictly convex function

Single optimum, gradient is non-zero away from the optimum.

f

f(tx1 + (1 − t)x2) < tf(x1) + (1 − t)f(x2)

Convexity
Linear and logistic regression losses are convex (usually strictly)

Convexity
Linear and logistic regression losses are convex (usually strictly)

Gradient descent will always* get us to the right answer.

Convexity
Neural network losses are (usually) not convex!

Why?

Convexity
Two equivalent solutions

Symmetry-breaking
A simple network

f(x) = σ(xT W1)T w0 = σ(x1w11)w01 + σ(x1w12)w02

d

dw01
f(x) =

d

dw02
f(x) =

Symmetry-breaking
A simple network

f(x) = σ(xT W1)T w0 = σ(x1w11)w01 + σ(x1w12)w02

d

dw01
f(x) = σ(x1w11) = σ(x1a)

d

dw02
f(x) = σ(x1w12) = σ(x1a)

Symmetry-breaking

When the network is initialized with symmetry, the
two neurons will always have the same output
and our solution is poor.

When initialized randomly, the two neurons can
create different transforms and a much better
solution is found.

Symmetry-breaking

1

We

Visualizing learning rates

A small learning rate means we
will move slowly, so It may take a
long time to find the minimum.

A well-chosen learning rate lets
us find a minimum quickly.

A too-large learning rate means
that steps may take us flying past
the minimum!

Scaled initialization
Initializing randomly:

This has a subtle issue though. Why?

wi ∼ N (0, 1) ∀ wi ∈ w

Scaled initialization
To see why let’s consider a linear function defined by randomly initialized weights:

Let’s consider the mean and variance of this output with respect to :

f(x) =
d

∑
i=1

xiwi

w

E[f(x)] =

Var[f(x)] =

Scaled initialization
To see why let’s consider a linear function defined by randomly initialized weights:

Let’s consider the mean and variance of this output with respect to :

f(x) =
d

∑
i=1

xiwi

w

E[f(x)] = E[d

∑
i=1

xiwi]

=
d

∑
i=1

xiE[wi] = 0, wi ∼ N (0, 1)

Scaled initialization
To see why let’s consider a linear function defined by randomly initialized weights:

Let’s consider the mean and variance of this output with respect to :

f(x) =
d

∑
i=1

xiwi

w

Var[f(x)] = Var[d

∑
i=1

xiwi]

=
d

∑
i=1

Var[xiwi] =
d

∑
i=1

x2
i Var[wi] =

d

∑
i=1

x2
i

Scaled initialization

Scaled initialization
Scaling

If we want the variance to be independent of , then we want:

f(x) =
d

∑
i=1

xiwi(1
s

)

d

s =

Scaled initialization
Scaling

If we want the variance to be independent of , then we want:

f(x) =
d

∑
i=1

xiwi(1
s

)

d

s = √d

Scaled initialization
Computing the variance

Var[d

∑
i=1

xiwi(1
√d

)] =

Scaled initialization
Computing the variance

Var[d

∑
i=1

xiwi(1
√d

)] =

d

∑
i=1

Var[xiwi(1
√d

)]

=
d

∑
i=1

x2
i (1

√d
)2

Var[wi] =
1
d

d

∑
i=1

x2
i

Scaled initialization
For neural network layers where the weights are a matrix , this works the same way:

A popular alternative scales the distribution according to both the number of inputs and outputs of the layer:

This is known as Xavier initialization (or Glorot initialization a"er the inventor Xavier Glorot).

W ∈ Rd×e

wij ∼ N (0,
1

√d
) ∀ wij ∈ W, w ∈ Rd×e

wij ∼ N (0, √ 2
d + e

) ∀ wij ∈ W, w ∈ Rd×e

Scaled initialization

Stochastic Gradient Descent

Computational complexity
• Dataset size:

• Dimensionality :

• Number of layers:

• Number of steps:

We can consider one of the networks shown above as a specific
example:

N

d

L

S

Computational complexity
Loss function

Gradient with respect to the parameters, .

Our analysis would be equivalent for classification problems.

Loss
MSE

(w, X, y) =
1
N

N

∑
i=1

(f(xi, w) − yi)2

w

∇wLoss
MSE

(w, X, y) = ∇w
1
N

N

∑
i=1

(f(xi, w) − yi)2

Computing a single neuron

Activation function : Constant,

Summation: : Linear, .

ϕ(x) = σ(xT w) = σ(d

∑
i=1

xiwi)

σ(⋅) O(1)

∑d
i=1 xiwi O(d)

Computing a single neuron

Backward pass?

• Given:

• Update:

ϕ(x) = σ(xT w) = σ(∑d
i=1 xiwi)

dLoss
dϕ

dLoss
dxi

dLoss
dwi

Computing a single neuron
Backward pass?

• Given:

• Update:

Activation function:

All scalars!

dLoss
dϕ

dLoss
dxi

dLoss
dwi

dLoss

d(xT w)
=

dLoss

dϕ

dϕ

d(xT w)

O(1)

Computing a single neuron
Backward pass?

• Given:

• Update:

dLoss
d(xT w)

dLoss
dxi

dLoss
dwi

xT w =
d

∑
i=1

xiwi

dLoss
dwi

=

Computing a single neuron
Backward pass?

• Given:

• Update:

 per entry. Total: .

dLoss
d(xT w)

dLoss
dxi

dLoss
dwi

dLoss

dxi
=

dLoss

d(xT w)
d(xT w)

dxi
=

dLoss

d(xT w)
wi

dLoss

dwi
=

dLoss

d(xT w)
d(xT w)

dwi
=

dLoss

d(xT w)
xi

O(1) O(d)

Cost per layer
 Neurons per layer

Total cost:

Full network:

O(d)
O(d2)

O(Ld2)

Computational complexity
We’ve bounded the time it takes to compute one of our predictions: .

 terms in summation, total cost of for a single gradient descent update:

Total cost of gradient descent: .

f(xi, w)

Loss
MSE

(w, X, y) =
1
N

N

∑
i=1

(f(xi, w) − yi)2

N O(NLd2)

w(k+1) ⟵ w(k) − α∇wLoss(w(k), X, y)

O(SNLd2)

AlexNet (2012)
• Dataset size:

• Dimensionality :

• Number of layers:

• Number of steps:

Network:N =

d =

L =

S =

AlexNet (2012)
• Dataset size:

• Dimensionality :

• Number of layers:

• Number of steps:

N =

d = 4000

L = 10

S =

Estimating loss
Neural network MSE loss:

Loss
MSE

(w, X, y) =
1
N

N

∑
i=1

(f(xi, w) − yi)2

Estimating loss
Neural network MSE loss:

Estimate by sampling:

Loss
MSE

(w, X, y) =
1
N

N

∑
i=1

(f(xi, w) − yi)2

Loss
MSE

(w, X, y) ≈ (f(xi, w) − yi)2, i ∼ Uniform(1, N)

Estimating loss

Expectation of sampled loss

Loss
MSE

(w, X, y) ≈ (f(xi, w) − yi)2, i ∼ Uniform(1, N)

Ei[(f(xi, w) − yi)2] =?

Estimating loss

Expectation of sampled loss is the true loss!

Loss
MSE

(w, X, y) ≈ (f(xi, w) − yi)2, i ∼ Uniform(1, N)

Ei[(f(xi, w) − yi)2] =
N

∑
i=1

p(i)(f(xi, w) − yi)2

=
1
N

N

∑
i=1

(f(xi, w) − yi)2

Estimating loss
In general any loss that can be written as a mean of individual losses can be estimated in this way:

Cost for full loss:

Cost of estimated loss:

Loss(w, X, y) =
1
N

N

∑
i=1

Loss(w, xi, yi)

Loss(w, X, y) = E[Loss(w, xi, yi)], i ∼ Uniform(1, N)

O(N)
O(1)

Estimating gradients
Gradient descent update:

Gradient can be composed into a sum of gradients and estimated the same way!

w(k+1) ⟵ w(k) − α∇wLoss(w(k), X, y)

∇wLoss(w, X, y) = ∇w(1
N

N

∑
i=1

Loss(w, xi, yi))

Estimating gradients

Stochastic gradient descent update:

∇wLoss(w, X, y) = ∇w(1
N

N

∑
i=1

Loss(w, xi, yi))

=
1
N

N

∑
i=1

∇wLoss(w, xi, yi) = E[∇wLoss(w, xi, yi)])

w(k+1) ⟵ w(k) − α∇wLoss(w(k), xi, yi)

i ∼ Uniform(1, N)

Estimating gradients

Minibatch SGD
Can estimate gradients with a minibatch of observations:

New estimate:

B

Batch: {(xb1 , yb1), (xb2 , yb2), . . . , (xbB
, ybB

)}

{b1, b2, . . . , bB} ∼ Uniform(1, N)

∇wLoss(w, X, y) ≈
1
B

B

∑
i=1

∇wLoss(w, xbi
, ybi

)

{b1, b2, . . . , bB} ∼ Uniform(1, N)

Minibatch SGD
Does this still give the correct expectation?

E[1
B

B

∑
i=1

∇wLoss(w, xbi
, ybi

)] =?

Minibatch SGD
Does this still give the correct expectation?

E[1
B

B

∑
i=1

∇wLoss(w, xbi
, ybi

)]

= (1
B

) B

∑
i=1

E[∇wLoss(w, xbi
, ybi

)]
= ∇wLoss(w, X, y)

Minibatch SGD
What about variance?

Var[1
B

B

∑
i=1

∇wLoss(w, xbi
, ybi

)] =?

Minibatch SGD
The variance decreases with the size of the batch!

Var[1
B

B

∑
i=1

∇wLoss(w, xbi
, ybi

)]

= (1
B2) B

∑
i=1

Var[∇wLoss(w, xbi
, ybi

)]

= (1
B

)Var[∇wLoss(w, xbi
, ybi

)]

Minibatch SGD

